我用数学以及转换方程的命令TeXForm
。数组太长了。我尝试找到一种方法,但我无法对齐这个方程。我该怎么办?
\documentclass[12pt,a4paper]{article}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{fourier}
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
\begin{document}
\[\left(
\begin{array}{ccc}
\{-7,-2,2\} & \{-5,8,0\} &\{-3,-6,4\} \\
\{-7,-2,2\} & \{-3,-6,4\} &\{7,-4,6\} \\
\{-7,-2,2\} & \{-3,6,10\} &\{4,8,9\} \\
\{-7,-2,4\} & \{-5,8,6\} & \{-3,-6,2\} \\
\{-7,-2,4\} & \{-3,-6,2\} &\{7,-4,0\} \\
\{-7,3,-1\} & \{-3,-5,7\} &\{4,-4,9\} \\
\{-7,3,7\} & \{-3,-5,-1\} &\{-2,8,9\} \\
\{-7,6,2\} & \{-5,-4,0\} &\{-3,10,4\} \\
\{-7,6,2\} & \{-3,-2,10\} &\{4,-4,9\} \\
\{-7,6,4\} & \{-3,10,2\} &\{7,8,0\} \\
\{-6,-2,-1\} & \{2,6,-5\} &\{7,8,0\} \\
\{-6,-2,7\} & \{-5,-4,0\} &\{2,6,11\} \\
\{-6,6,-1\} & \{2,-2,-5\} &\{7,-4,0\} \\
\{-6,6,7\} & \{-5,8,0\} &\{2,-2,11\} \\
\{-5,-4,0\} & \{5,-6,2\} &\{9,-2,4\} \\
\{-5,-4,6\} & \{-3,1,11\} &\{5,9,7\} \\
\{-5,-4,6\} & \{5,-6,4\} & \{9,-2,2\} \\
\{-5,-1,9\} & \{-3,-6,4\} &\{5,-2,-4\} \\
\{-5,5,-3\} & \{0,10,-1\} &\{8,6,7\} \\
\{-5,5,9\} & \{0,10,7\} &\{8,6,-1\} \\
\{-5,8,0\} & \{-3,9,7\} &\{5,1,11\} \\
\{-5,8,0\} & \{5,10,2\} & \{9,6,4\} \\
\{-3,-2,-4\} & \{5,-6,4\} &\{7,-1,9\} \\
\{-3,1,-5\} & \{5,9,-1\} &\{7,8,6\} \\
\{-3,9,-1\} & \{5,1,-5\} &\{7,-4,0\} \\
\{-2,-4,-3\} & \{0,6,-5\} &\{2,10,-1\} \\
\{-2,-4,-3\} & \{5,-5,-1\} &\{9,3,7\} \\
\{-2,-4,9\} & \{0,6,11\} &\{2,10,7\} \\
\{-2,8,-3\} & \{0,10,7\} &\{2,6,11\} \\
\{-2,8,9\} & \{0,10,-1\} &\{2,6,-5\} \\
\{0,-6,-1\} & \{2,-2,-5\} & \{4,8,-3\} \\
\{0,-6,7\} & \{2,-2,11\} &\{4,8,9\} \\
\{0,-2,-5\} & \{2,-6,-1\} &\{4,-4,9\} \\
\{0,-2,11\} & \{2,-6,7\} &\{4,-4,-3\} \\
\{0,6,-5\} & \{2,10,-1\} & \{4,8,9\} \\
\{0,6,11\} & \{2,10,7\} & \{4,8,-3\} \\
\{0,10,-1\} & \{2,6,-5\} & \{4,-4,-3\} \\
\{0,10,7\} & \{2,6,11\} & \{4,-4,9\} \\
\{4,-4,-3\} & \{5,6,10\} & \{9,-2,2\} \\
\{4,8,-3\} & \{5,-5,7\} &\{9,3,-1\} \\
\{4,8,-3\} & \{5,-2,10\} & \{9,6,2\} \\
\{5,-6,2\} & \{7,8,6\} &\{9,-2,4\} \\
\{5,-6,4\} & \{7,8,0\} &\{9,-2,2\} \\
\{5,10,4\} & \{7,-4,0\} &\{9,6,2\} \\
\{0,10,7\} & \{2,6,11\} & \{4,-4,9\} \\
\{4,-4,-3\} & \{5,6,10\} & \{9,-2,2\} \\
\{4,8,-3\} & \{5,-5,7\} & \{9,3,-1\} \\
\{4,8,-3\} & \{5,-2,10\} &\{9,6,2\} \\
\{5,-6,2\} & \{7,8,6\} & \{9,-2,4\} \\
\{5,-6,4\} & \{7,8,0\} &\{9,-2,2\} \\
\{5,10,4\} & \{7,-4,0\} &\{9,6,2\}
\end{array}
\right)\]
\end{document}
答案1
\documentclass[12pt,a4paper]{article}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{fourier}
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
\begin{document}
\small\[
\left(\begin{array}{*{3}{r@{,}r@{,}r}}
\{-7&-2&2\} & \{-5&8&0\} &\{-3&-6&4\} \\
\{-7&-2&2\} & \{-3&-6&4\} &\{7&-4&6\} \\
\{-7&-2&2\} & \{-3&6&10\} &\{4&8&9\} \\
\{-7&-2&4\} & \{-5&8&6\} & \{-3&-6&2\} \\
\{-7&-2&4\} & \{-3&-6&2\} &\{7&-4&0\} \\
\{-7&3&-1\} & \{-3&-5&7\} &\{4&-4&9\} \\
\{-7&3&7\} & \{-3&-5&-1\} &\{-2&8&9\} \\
\{-7&6&2\} & \{-5&-4&0\} &\{-3&10&4\} \\
\{-7&6&2\} & \{-3&-2&10\} &\{4&-4&9\} \\
\{-7&6&4\} & \{-3&10&2\} &\{7&8&0\} \\
\{-6&-2&-1\} & \{2&6&-5\} &\{7&8&0\} \\
\{-6&-2&7\} & \{-5&-4&0\} &\{2&6&11\} \\
\{-6&6&-1\} & \{2&-2&-5\} &\{7&-4&0\} \\
\{-6&6&7\} & \{-5&8&0\} &\{2&-2&11\} \\
\{-5&-4&0\} & \{5&-6&2\} &\{9&-2&4\} \\
\{-5&-4&6\} & \{-3&1&11\} &\{5&9&7\} \\
\{-5&-4&6\} & \{5&-6&4\} & \{9&-2&2\} \\
\{-5&-1&9\} & \{-3&-6&4\} &\{5&-2&-4\} \\
\{-5&5&-3\} & \{0&10&-1\} &\{8&6&7\} \\
\{-5&5&9\} & \{0&10&7\} &\{8&6&-1\} \\
\{-5&8&0\} & \{-3&9&7\} &\{5&1&11\} \\
\{-5&8&0\} & \{5&10&2\} & \{9&6&4\} \\
\{-3&-2&-4\} & \{5&-6&4\} &\{7&-1&9\} \\
\{-3&1&-5\} & \{5&9&-1\} &\{7&8&6\} \\
\{-3&9&-1\} & \{5&1&-5\} &\{7&-4&0\} \\
\{-2&-4&-3\} & \{0&6&-5\} &\{2&10&-1\} \\
\{-2&-4&-3\} & \{5&-5&-1\} &\{9&3&7\} \\
\{-2&-4&9\} & \{0&6&11\} &\{2&10&7\} \\
\{-2&8&-3\} & \{0&10&7\} &\{2&6&11\} \\
\{-2&8&9\} & \{0&10&-1\} &\{2&6&-5\} \\
\{0&-6&-1\} & \{2&-2&-5\} & \{4&8&-3\} \\
\{0&-6&7\} & \{2&-2&11\} &\{4&8&9\} \\
\{0&-2&-5\} & \{2&-6&-1\} &\{4&-4&9\} \\
\{0&-2&11\} & \{2&-6&7\} &\{4&-4&-3\} \\
\{0&6&-5\} & \{2&10&-1\} & \{4&8&9\} \\
\{0&6&11\} & \{2&10&7\} & \{4&8&-3\} \\
\{0&10&-1\} & \{2&6&-5\} & \{4&-4&-3\} \\
\{0&10&7\} & \{2&6&11\} & \{4&-4&9\} \\
\{4&-4&-3\} & \{5&6&10\} & \{9&-2&2\} \\
\{4&8&-3\} & \{5&-5&7\} &\{9&3&-1\} \\
\{4&8&-3\} & \{5&-2&10\} & \{9&6&2\} \\
\{5&-6&2\} & \{7&8&6\} &\{9&-2&4\} \\
\{5&-6&4\} & \{7&8&0\} &\{9&-2&2\} \\
\{5&10&4\} & \{7&-4&0\} &\{9&6&2\} \\
\{0&10&7\} & \{2&6&11\} & \{4&-4&9\} \\
\{4&-4&-3\} & \{5&6&10\} & \{9&-2&2\} \\
\{4&8&-3\} & \{5&-5&7\} & \{9&3&-1\} \\
\{4&8&-3\} & \{5&-2&10\} &\{9&6&2\} \\
\{5&-6&2\} & \{7&8&6\} & \{9&-2&4\} \\
\{5&-6&4\} & \{7&8&0\} &\{9&-2&2\} \\
\{5&10&4\} & \{7&-4&0\} &\{9&6&2\}
\end{array}\right)\]
\end{document}
答案2
根据您的需要,有两种方法。每种方法都需要手动编辑输出。结果和完整代码显示在底部。
方法 1
由于整个表达式都括在括号中,因此没有标准方法可以做到这一点。我建议您将矩阵描述为
X = ( X_1 )
( X_2 )
其中 X_1 和 X_2 是较小的子矩阵,可以放入可用空间中。现在X_1 =
在 之前插入\left(\begin{array}
并插入
\end{array}\right)\]
and
\[ X_2 = \left(
\begin{array}{ccc}
在适合分页符的位置。
(另一种方法是将 X_1 和 X_2 的定义放在浮动环境中,例如table
并引用它们table
。然后您只需确保每个 X_i 都小于一页。)
方法 2
如果括号不重要,那么您可以使用包longtable
,或mdframed
。两者都不需要手动选择分页符。这里有一种mdframed
方法。将\[\left(\array{ccc}' and
\end{array}\right)]` 替换为
\begin{mdframed}[hidealllines=true]
\allowdisplaybreaks
\begin{align*}
和
\end{align*}
\end{mdframed}
并将每个替换&
为&&
。
方法 1 的结果
方法 2 的结果
方法 1 的代码
\documentclass[12pt,a4paper]{article}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{fourier}
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
\usepackage{lipsum}% for dummy text
\begin{document}
\lipsum[1-2]
\begin{equation*}
X =
\begin{pmatrix}
X_1 \\ X_2
\end{pmatrix}
,
\end{equation*}
where
\[
X_1 =
\left(
\begin{array}{ccc}
\{-7,-2,2\} & \{-5,8,0\} &\{-3,-6,4\} \\
\{-7,-2,2\} & \{-3,-6,4\} &\{7,-4,6\} \\
\{-7,-2,2\} & \{-3,6,10\} &\{4,8,9\} \\
\{-7,-2,4\} & \{-5,8,6\} & \{-3,-6,2\} \\
\{-7,-2,4\} & \{-3,-6,2\} &\{7,-4,0\} \\
\{-7,3,-1\} & \{-3,-5,7\} &\{4,-4,9\} \\
\{-7,3,7\} & \{-3,-5,-1\} &\{-2,8,9\} \\
\{-7,6,2\} & \{-5,-4,0\} &\{-3,10,4\} \\
\{-7,6,2\} & \{-3,-2,10\} &\{4,-4,9\} \\
\{-7,6,4\} & \{-3,10,2\} &\{7,8,0\} \\
\{-6,-2,-1\} & \{2,6,-5\} &\{7,8,0\} \\
\{-6,-2,7\} & \{-5,-4,0\} &\{2,6,11\} \\
\{-6,6,-1\} & \{2,-2,-5\} &\{7,-4,0\} \\
\{-6,6,7\} & \{-5,8,0\} &\{2,-2,11\} \\
\{-5,-4,0\} & \{5,-6,2\} &\{9,-2,4\} \\
\{-5,-4,6\} & \{-3,1,11\} &\{5,9,7\} \\
\{-5,-4,6\} & \{5,-6,4\} & \{9,-2,2\} \\
\{-5,-1,9\} & \{-3,-6,4\} &\{5,-2,-4\} \\
\{-5,5,-3\} & \{0,10,-1\} &\{8,6,7\} \\
\{-5,5,9\} & \{0,10,7\} &\{8,6,-1\} \\
\{-5,8,0\} & \{-3,9,7\} &\{5,1,11\} \\
\{-5,8,0\} & \{5,10,2\} & \{9,6,4\} \\
\{-3,-2,-4\} & \{5,-6,4\} &\{7,-1,9\} \\
\{-3,1,-5\} & \{5,9,-1\} &\{7,8,6\} \\
\{-3,9,-1\} & \{5,1,-5\} &\{7,-4,0\} \\
\{-2,-4,-3\} & \{0,6,-5\} &\{2,10,-1\}\\
\{-2,-4,-3\} & \{5,-5,-1\} &\{9,3,7\} \\
\{-2,-4,9\} & \{0,6,11\} &\{2,10,7\} \\
\{-2,8,-3\} & \{0,10,7\} &\{2,6,11\} \\
\{-2,8,9\} & \{0,10,-1\} &\{2,6,-5\} \\
\{0,-6,-1\} & \{2,-2,-5\} & \{4,8,-3\} \\
\end{array}\right)\]
and
\[ X_2 = \left(
\begin{array}{ccc}
\{0,-6,7\} & \{2,-2,11\} &\{4,8,9\} \\
\{0,-2,-5\} & \{2,-6,-1\} &\{4,-4,9\} \\
\{0,-2,11\} & \{2,-6,7\} &\{4,-4,-3\} \\
\{0,6,-5\} & \{2,10,-1\} & \{4,8,9\} \\
\{0,6,11\} & \{2,10,7\} & \{4,8,-3\} \\
\{0,10,-1\} & \{2,6,-5\} & \{4,-4,-3\} \\
\{0,10,7\} & \{2,6,11\} & \{4,-4,9\} \\
\{4,-4,-3\} & \{5,6,10\} & \{9,-2,2\} \\
\{4,8,-3\} & \{5,-5,7\} &\{9,3,-1\} \\
\{4,8,-3\} & \{5,-2,10\} & \{9,6,2\} \\
\{5,-6,2\} & \{7,8,6\} &\{9,-2,4\} \\
\{5,-6,4\} & \{7,8,0\} &\{9,-2,2\} \\
\{5,10,4\} & \{7,-4,0\} &\{9,6,2\} \\
\{0,10,7\} & \{2,6,11\} & \{4,-4,9\} \\
\{4,-4,-3\} & \{5,6,10\} & \{9,-2,2\} \\
\{4,8,-3\} & \{5,-5,7\} & \{9,3,-1\} \\
\{4,8,-3\} & \{5,-2,10\} &\{9,6,2\} \\
\{5,-6,2\} & \{7,8,6\} & \{9,-2,4\} \\
\{5,-6,4\} & \{7,8,0\} &\{9,-2,2\} \\
\{5,10,4\} & \{7,-4,0\} &\{9,6,2\}
\end{array}
\right)\]
\end{document}
方法 2 的代码
\documentclass[12pt,a4paper]{article}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{fourier}
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
\usepackage[tikz]{mdframed}
\usepackage{lipsum}% for dummy text
\begin{document}
\lipsum[1-2]
\begin{mdframed}[hidealllines=true]
\allowdisplaybreaks
\begin{align*}
\{-7,-2,2\} && \{-5,8,0\} &&\{-3,-6,4\} \\
\{-7,-2,2\} && \{-3,-6,4\} &&\{7,-4,6\} \\
\{-7,-2,2\} && \{-3,6,10\} &&\{4,8,9\} \\
\{-7,-2,4\} && \{-5,8,6\} && \{-3,-6,2\} \\
\{-7,-2,4\} && \{-3,-6,2\} &&\{7,-4,0\} \\
\{-7,3,-1\} && \{-3,-5,7\} &&\{4,-4,9\} \\
\{-7,3,7\} && \{-3,-5,-1\} &&\{-2,8,9\} \\
\{-7,6,2\} && \{-5,-4,0\} &&\{-3,10,4\} \\
\{-7,6,2\} && \{-3,-2,10\} &&\{4,-4,9\} \\
\{-7,6,4\} && \{-3,10,2\} &&\{7,8,0\} \\
\{-6,-2,-1\} && \{2,6,-5\} &&\{7,8,0\} \\
\{-6,-2,7\} && \{-5,-4,0\} &&\{2,6,11\} \\
\{-6,6,-1\} && \{2,-2,-5\} &&\{7,-4,0\} \\
\{-6,6,7\} && \{-5,8,0\} &&\{2,-2,11\} \\
\{-5,-4,0\} && \{5,-6,2\} &&\{9,-2,4\} \\
\{-5,-4,6\} && \{-3,1,11\} &&\{5,9,7\} \\
\{-5,-4,6\} && \{5,-6,4\} && \{9,-2,2\} \\
\{-5,-1,9\} && \{-3,-6,4\} &&\{5,-2,-4\} \\
\{-5,5,-3\} && \{0,10,-1\} &&\{8,6,7\} \\
\{-5,5,9\} && \{0,10,7\} &&\{8,6,-1\} \\
\{-5,8,0\} && \{-3,9,7\} &&\{5,1,11\} \\
\{-5,8,0\} && \{5,10,2\} && \{9,6,4\} \\
\{-3,-2,-4\} && \{5,-6,4\} &&\{7,-1,9\} \\
\{-3,1,-5\} && \{5,9,-1\} &&\{7,8,6\} \\
\{-3,9,-1\} && \{5,1,-5\} &&\{7,-4,0\} \\
\{-2,-4,-3\} && \{0,6,-5\} &&\{2,10,-1\}\\
\{-2,-4,-3\} && \{5,-5,-1\} &&\{9,3,7\} \\
\{-2,-4,9\} && \{0,6,11\} &&\{2,10,7\} \\
\{-2,8,-3\} && \{0,10,7\} &&\{2,6,11\} \\
\{-2,8,9\} && \{0,10,-1\} &&\{2,6,-5\} \\
\{0,-6,-1\} && \{2,-2,-5\} && \{4,8,-3\} \\
\{0,-6,7\} && \{2,-2,11\} &&\{4,8,9\} \\
\{0,-2,-5\} && \{2,-6,-1\} &&\{4,-4,9\} \\
\{0,-2,11\} && \{2,-6,7\} &&\{4,-4,-3\} \\
\{0,6,-5\} && \{2,10,-1\} && \{4,8,9\} \\
\{0,6,11\} && \{2,10,7\} && \{4,8,-3\} \\
\{0,10,-1\} && \{2,6,-5\} && \{4,-4,-3\} \\
\{0,10,7\} && \{2,6,11\} && \{4,-4,9\} \\
\{4,-4,-3\} && \{5,6,10\} && \{9,-2,2\} \\
\{4,8,-3\} && \{5,-5,7\} &&\{9,3,-1\} \\
\{4,8,-3\} && \{5,-2,10\} && \{9,6,2\} \\
\{5,-6,2\} && \{7,8,6\} &&\{9,-2,4\} \\
\{5,-6,4\} && \{7,8,0\} &&\{9,-2,2\} \\
\{5,10,4\} && \{7,-4,0\} &&\{9,6,2\} \\
\{0,10,7\} && \{2,6,11\} && \{4,-4,9\} \\
\{4,-4,-3\} && \{5,6,10\} && \{9,-2,2\} \\
\{4,8,-3\} && \{5,-5,7\} && \{9,3,-1\} \\
\{4,8,-3\} && \{5,-2,10\} &&\{9,6,2\} \\
\{5,-6,2\} && \{7,8,6\} && \{9,-2,4\} \\
\{5,-6,4\} && \{7,8,0\} &&\{9,-2,2\} \\
\{5,10,4\} && \{7,-4,0\} &&\{9,6,2\}\\
\end{align*}
\end{mdframed}
\end{document}
答案3
您可以使用longtable
具有九列的环境。每列都会在数学模式下自动处理,并自动插入花括号和逗号。由于longtable
可以跨页分页,因此您不必担心允许(或禁止……)分页符只是为了使数组适合一页。
结果数组的前六行如下所示:
\documentclass[12pt,a4paper]{article}
\usepackage[margin=2cm]{geometry}
\usepackage{fourier,longtable,array}
\begin{document}
\begin{longtable}{| *{3}{>{$\{}r<{$} @{,\,} >{$}r<{$} @{,\,} >{$}r<{\}$} } |}
\endfirsthead % blank header on first page
\multicolumn{9}{l}{(\emph{array continued from previous page})}
\endhead
\multicolumn{9}{r}{(\emph{array continued on next page})}
\endfoot
\endlastfoot % blank footer on final page
-7 & -2 & 2 & -5 & 8 & 0 &-3 & -6 & 4 \\
-7 & -2 & 2 & -3 & -6 & 4 &7 & -4 & 6 \\
-7 & -2 & 2 & -3 & 6 & 10 &4 & 8 & 9 \\
-7 & -2 & 4 & -5 & 8 & 6 & -3 & -6 & 2 \\
-7 & -2 & 4 & -3 & -6 & 2 &7 & -4 & 0 \\
-7 & 3 & -1 & -3 & -5 & 7 &4 & -4 & 9 \\
-7 & 3 & 7 & -3 & -5 & -1 &-2 & 8 & 9 \\
-7 & 6 & 2 & -5 & -4 & 0 &-3 & 10 & 4 \\
-7 & 6 & 2 & -3 & -2 & 10 &4 & -4 & 9 \\
-7 & 6 & 4 & -3 & 10 & 2 &7 & 8 & 0 \\
-6 & -2 & -1 & 2 & 6 & -5 &7 & 8 & 0 \\
-6 & -2 & 7 & -5 & -4 & 0 &2 & 6 & 11 \\
-6 & 6 & -1 & 2 & -2 & -5 &7 & -4 & 0 \\
-6 & 6 & 7 & -5 & 8 & 0 &2 & -2 & 11 \\
-5 & -4 & 0 & 5 & -6 & 2 &9 & -2 & 4 \\
-5 & -4 & 6 & -3 & 1 & 11 &5 & 9 & 7 \\
-5 & -4 & 6 & 5 & -6 & 4 & 9 & -2 & 2 \\
-5 & -1 & 9 & -3 & -6 & 4 &5 & -2 & -4 \\
-5 & 5 & -3 & 0 & 10 & -1 &8 & 6 & 7 \\
-5 & 5 & 9 & 0 & 10 & 7 &8 & 6 & -1 \\
-5 & 8 & 0 & -3 & 9 & 7 &5 & 1 & 11 \\
-5 & 8 & 0 & 5 & 10 & 2 & 9 & 6 & 4 \\
-3 & -2 & -4 & 5 & -6 & 4 &7 & -1 & 9 \\
-3 & 1 & -5 & 5 & 9 & -1 &7 & 8 & 6 \\
-3 & 9 & -1 & 5 & 1 & -5 &7 & -4 & 0 \\
-2 & -4 & -3 & 0 & 6 & -5 &2 & 10 & -1 \\
-2 & -4 & -3 & 5 & -5 & -1 &9 & 3 & 7 \\
-2 & -4 & 9 & 0 & 6 & 11 &2 & 10 & 7 \\
-2 & 8 & -3 & 0 & 10 & 7 &2 & 6 & 11 \\
-2 & 8 & 9 & 0 & 10 & -1 &2 & 6 & -5 \\
0 & -6 & -1 & 2 & -2 & -5 & 4 & 8 & -3 \\
0 & -6 & 7 & 2 & -2 & 11 &4 & 8 & 9 \\
0 & -2 & -5 & 2 & -6 & -1 &4 & -4 & 9 \\
0 & -2 & 11 & 2 & -6 & 7 &4 & -4 & -3 \\
0 & 6 & -5 & 2 & 10 & -1 & 4 & 8 & 9 \\
0 & 6 & 11 & 2 & 10 & 7 & 4 & 8 & -3 \\
0 & 10 & -1 & 2 & 6 & -5 & 4 & -4 & -3 \\
0 & 10 & 7 & 2 & 6 & 11 & 4 & -4 & 9 \\
4 & -4 & -3 & 5 & 6 & 10 & 9 & -2 & 2 \\
4 & 8 & -3 & 5 & -5 & 7 &9 & 3 & -1 \\
4 & 8 & -3 & 5 & -2 & 10 & 9 & 6 & 2 \\
5 & -6 & 2 & 7 & 8 & 6 &9 & -2 & 4 \\
5 & -6 & 4 & 7 & 8 & 0 &9 & -2 & 2 \\
5 & 10 & 4 & 7 & -4 & 0 &9 & 6 & 2 \\
0 & 10 & 7 & 2 & 6 & 11 & 4 & -4 & 9 \\
4 & -4 & -3 & 5 & 6 & 10 & 9 & -2 & 2 \\
4 & 8 & -3 & 5 & -5 & 7 & 9 & 3 & -1 \\
4 & 8 & -3 & 5 & -2 & 10 &9 & 6 & 2 \\
5 & -6 & 2 & 7 & 8 & 6 & 9 & -2 & 4 \\
5 & -6 & 4 & 7 & 8 & 0 &9 & -2 & 2 \\
5 & 10 & 4 & 7 & -4 & 0 &9 & 6 & 2 \\
\end{longtable}
\end{document}
附录:如果您选择保留数组主体的代码,就像 Mathematica 提供的那样,您仍然可以使用环境longtable
而不是array
环境来排版材料。只需替换当前指令
\[ \left( \begin{array}{ccc}
和
\begin{longtable}{| *{3}{>{$}c<{$}} | }
如果数组中的某处出现分页符,您可以提供以下代码来引导读者的视线:
\endfirsthead % blank header on first page
\multicolumn{3}{@{}l}{(\emph{array continued from previous page})}
\endhead
\multicolumn{3}{r@{}}{(\emph{array continued on next page})}
\endfoot
\endlastfoot % blank footer on final page
第二页的内容如下:
\documentclass{article}
\usepackage{array,longtable,fourier}
\begin{document}
\begin{longtable}{| *{3}{>{$}c<{$}} | }
\endfirsthead % blank header on first page
\multicolumn{3}{@{}l}{(\emph{array continued from previous page})}
\endhead
\multicolumn{3}{r@{}}{(\emph{array continued on next page})}
\endfoot
\endlastfoot % blank footer on final page
\{-7,-2,2\} & \{-5,8,0\} &\{-3,-6,4\} \\
\{-7,-2,2\} & \{-3,-6,4\} &\{7,-4,6\} \\
\{-7,-2,2\} & \{-3,6,10\} &\{4,8,9\} \\
\{-7,-2,4\} & \{-5,8,6\} & \{-3,-6,2\} \\
\{-7,-2,4\} & \{-3,-6,2\} &\{7,-4,0\} \\
\{-7,3,-1\} & \{-3,-5,7\} &\{4,-4,9\} \\
\{-7,3,7\} & \{-3,-5,-1\} &\{-2,8,9\} \\
\{-7,6,2\} & \{-5,-4,0\} &\{-3,10,4\} \\
\{-7,6,2\} & \{-3,-2,10\} &\{4,-4,9\} \\
\{-7,6,4\} & \{-3,10,2\} &\{7,8,0\} \\
\{-6,-2,-1\} & \{2,6,-5\} &\{7,8,0\} \\
\{-6,-2,7\} & \{-5,-4,0\} &\{2,6,11\} \\
\{-6,6,-1\} & \{2,-2,-5\} &\{7,-4,0\} \\
\{-6,6,7\} & \{-5,8,0\} &\{2,-2,11\} \\
\{-5,-4,0\} & \{5,-6,2\} &\{9,-2,4\} \\
\{-5,-4,6\} & \{-3,1,11\} &\{5,9,7\} \\
\{-5,-4,6\} & \{5,-6,4\} & \{9,-2,2\} \\
\{-5,-1,9\} & \{-3,-6,4\} &\{5,-2,-4\} \\
\{-5,5,-3\} & \{0,10,-1\} &\{8,6,7\} \\
\{-5,5,9\} & \{0,10,7\} &\{8,6,-1\} \\
\{-5,8,0\} & \{-3,9,7\} &\{5,1,11\} \\
\{-5,8,0\} & \{5,10,2\} & \{9,6,4\} \\
\{-3,-2,-4\} & \{5,-6,4\} &\{7,-1,9\} \\
\{-3,1,-5\} & \{5,9,-1\} &\{7,8,6\} \\
\{-3,9,-1\} & \{5,1,-5\} &\{7,-4,0\} \\
\{-2,-4,-3\} & \{0,6,-5\} &\{2,10,-1\} \\
\{-2,-4,-3\} & \{5,-5,-1\} &\{9,3,7\} \\
\{-2,-4,9\} & \{0,6,11\} &\{2,10,7\} \\
\{-2,8,-3\} & \{0,10,7\} &\{2,6,11\} \\
\{-2,8,9\} & \{0,10,-1\} &\{2,6,-5\} \\
\{0,-6,-1\} & \{2,-2,-5\} & \{4,8,-3\} \\
\{0,-6,7\} & \{2,-2,11\} &\{4,8,9\} \\
\{0,-2,-5\} & \{2,-6,-1\} &\{4,-4,9\} \\
\{0,-2,11\} & \{2,-6,7\} &\{4,-4,-3\} \\
\{0,6,-5\} & \{2,10,-1\} & \{4,8,9\} \\
\{0,6,11\} & \{2,10,7\} & \{4,8,-3\} \\
\{0,10,-1\} & \{2,6,-5\} & \{4,-4,-3\} \\
\{0,10,7\} & \{2,6,11\} & \{4,-4,9\} \\
\{4,-4,-3\} & \{5,6,10\} & \{9,-2,2\} \\
\{4,8,-3\} & \{5,-5,7\} &\{9,3,-1\} \\
\{4,8,-3\} & \{5,-2,10\} & \{9,6,2\} \\
\{5,-6,2\} & \{7,8,6\} &\{9,-2,4\} \\
\{5,-6,4\} & \{7,8,0\} &\{9,-2,2\} \\
\{5,10,4\} & \{7,-4,0\} &\{9,6,2\} \\
\{0,10,7\} & \{2,6,11\} & \{4,-4,9\} \\
\{4,-4,-3\} & \{5,6,10\} & \{9,-2,2\} \\
\{4,8,-3\} & \{5,-5,7\} & \{9,3,-1\} \\
\{4,8,-3\} & \{5,-2,10\} &\{9,6,2\} \\
\{5,-6,2\} & \{7,8,6\} & \{9,-2,4\} \\
\{5,-6,4\} & \{7,8,0\} &\{9,-2,2\} \\
\{5,10,4\} & \{7,-4,0\} &\{9,6,2\}
\end{longtable}
\end{document}