我有这个代码
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[margin=2.5cm,showframe]{geometry}
\usepackage{amsmath}
\begin{document}
\begin{equation}
dy_{t}
=\frac{\partial g}{\partial t}(x_{t},t)dt
+\frac{\partial g}{\partial x}(x_{t},t)dx_{t}
+\frac{1}{2}\frac{\partial^2 g}{\partial x^2}(x_{t},t)(dx_{t})^2
\end{equation}
\end{document}
产生这个输出
有没有办法给这个方程起个名字,fx伊藤引理并将其直接插入到等式下方(居中)?这个想法是它仍然是\begin{equation}...\end{equation}
。我读过这,但解决方案并不完全相同。提前致谢!
答案1
这似乎不是一个好主意,但文档是你的。然而,链接问题中的方法更糟糕。
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[margin=2.5cm,showframe]{geometry}
\usepackage{amsmath}
\begin{document}
\begin{gather}
dy_{t}
=\frac{\partial g}{\partial t}(x_{t},t)dt
+\frac{\partial g}{\partial x}(x_{t},t)dx_{t}
+\frac{1}{2}\frac{\partial^2 g}{\partial x^2}(x_{t},t)(dx_{t})^2
\\
\text{Itô's lemma}\notag
\end{gather}
\end{document}
为了完整起见,我宁愿选择下面这样的内容。
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[margin=2.5cm,showframe]{geometry}
\usepackage{amsmath}
\begin{document}
We obtain the following equation, known as \emph{Itô's lemma},
\begin{equation}
dy_{t}
=\frac{\partial g}{\partial t}(x_{t},t)dt
+\frac{\partial g}{\partial x}(x_{t},t)dx_{t}
+\frac{1}{2}\frac{\partial^2 g}{\partial x^2}(x_{t},t)(dx_{t})^2
\end{equation}
\end{document}
如果您遇到这种情况,我可以提出类似的建议。
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[margin=2.5cm,showframe]{geometry}
\usepackage{amsmath}
\usepackage{nccmath}
\begin{document}
\section{Main body}
We recall the fundamental \emph{Pythagoras' theorem}
\begin{equation}\label{pyth}
a^2+b^2=c^2
\end{equation}
From it we easily obtain the following equation, known as \emph{Itô's lemma},
\begin{equation}\label{ito}
dy_{t}
=\frac{\partial g}{\partial t}(x_{t},t)dt
+\frac{\partial g}{\partial x}(x_{t},t)dx_{t}
+\frac{1}{2}\frac{\partial^2 g}{\partial x^2}(x_{t},t)(dx_{t})^2
\end{equation}
\begin{fleqn}[2em]
\setlength{\parindent}{0pt}
\section{Equations}
Pythagoras' theorem
\begin{equation}\tag{\ref{pyth}}
a^2+b^2=c^2
\end{equation}
Itô's lemma
\begin{equation}\tag{\ref{ito}}
dy_{t}
=\frac{\partial g}{\partial t}(x_{t},t)dt
+\frac{\partial g}{\partial x}(x_{t},t)dx_{t}
+\frac{1}{2}\frac{\partial^2 g}{\partial x^2}(x_{t},t)(dx_{t})^2
\end{equation}
\end{fleqn}
\end{document}
或者,在名称旁边加上引用:
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[margin=2.5cm,showframe]{geometry}
\usepackage{amsmath}
\usepackage{nccmath}
\begin{document}
\section{Main body}
We recall the fundamental \emph{Pythagoras' theorem}
\begin{equation}\label{pyth}
a^2+b^2=c^2
\end{equation}
From it we easily obtain the following equation, known as \emph{Itô's lemma},
\begin{equation}\label{ito}
dy_{t}
=\frac{\partial g}{\partial t}(x_{t},t)dt
+\frac{\partial g}{\partial x}(x_{t},t)dx_{t}
+\frac{1}{2}\frac{\partial^2 g}{\partial x^2}(x_{t},t)(dx_{t})^2
\end{equation}
\begin{fleqn}[2em]
\setlength{\parindent}{0pt}
\section{Equations}
Pythagoras' theorem~\eqref{pyth}
\begin{equation*}
a^2+b^2=c^2
\end{equation*}
Itô's lemma~\eqref{ito}
\begin{equation*}
dy_{t}
=\frac{\partial g}{\partial t}(x_{t},t)dt
+\frac{\partial g}{\partial x}(x_{t},t)dx_{t}
+\frac{1}{2}\frac{\partial^2 g}{\partial x^2}(x_{t},t)(dx_{t})^2
\end{equation*}
\end{fleqn}
\end{document}