有没有办法让文本完全包裹在每个项目下面?
\documentclass[a4paper,12pt]{extarticle}
\usepackage[utf8]{inputenc}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{enumitem}
\newtheorem{factinner}{Fact}
\newenvironment{fact}[1]{%
\renewcommand\thefactinner{#1}%
\factinner
}{\endfactinner}
\begin{document}
\section{Linear Transformations \& Matrices}
\begin{fact}{1}
\begin{proof}
Proceed by cases.
\begin{enumerate}[leftmargin=*, align=left]
\item[\textbf{Case 1}] Let $\mathsf{T}$ be linear. Trivial.
\item[\textbf{Case 2}] Let $\mathsf{T}(cx + y) = c\mathsf{T}(x) + \mathsf{T}(y)$. To satisfy the first criteria of linearity, let $c =1$. To satisfy the second, let $y = \mathit{0}$. Let $\mathsf{T}(cx + y) = c\mathsf{T}(x) + \mathsf{T}(y)$. To satisfy the first criteria of linearity, let $c =1$. To satisfy the second, let $y = \mathit{0}$.
\end{enumerate}
\end{proof}
\end{fact}
\end{document}
答案1
这是你想要的吗?
\documentclass{article}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{enumitem}
\newtheorem{factinner}{Fact}
\newenvironment{fact}[1]{%
\renewcommand\thefactinner{#1}%
\factinner
}{\endfactinner}
\begin{document}
\section{Linear Transformations \& Matrices}
\begin{fact}{1}
\begin{proof}
Proceed by cases.
\begin{enumerate}[label={\textbf{Case \arabic*}}, leftmargin=0pt, itemindent=*]
\item Let $\mathsf{T}$ be linear. Trivial.
\item Let $\mathsf{T}(cx + y) = c\mathsf{T}(x) + \mathsf{T}(y)$. To satisfy
the first criteria of linearity, let $c =1$. To satisfy the second, let
$y = \mathit{0}$. Let $\mathsf{T}(cx + y) = c\mathsf{T}(x) + \mathsf{T}(y)$.
To satisfy the first criteria of linearity, let $c =1$. To satisfy the
second, let $y = \mathit{0}$.
\end{enumerate}
\end{proof}
\end{fact}
\end{document}
无关:你不想让事实自动编号吗,就像这样:
\documentclass{article}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{enumitem}
\newtheorem{fact}{Fact}
\begin{document}
\section{Linear Transformations \& Matrices}
\begin{fact}
\begin{proof}
Proceed by cases.
\begin{enumerate}[label={\textbf{Case \arabic*}}, leftmargin=0pt, itemindent=*]
\item Let $\mathsf{T}$ be linear. Trivial.
\item Let $\mathsf{T}(cx + y) = c\mathsf{T}(x) + \mathsf{T}(y)$. To satisfy
the first criteria of linearity, let $c =1$. To satisfy the second, let
$y = \mathit{0}$. Let $\mathsf{T}(cx + y) = c\mathsf{T}(x) + \mathsf{T}(y)$.
To satisfy the first criteria of linearity, let $c =1$. To satisfy the
second, let $y = \mathit{0}$.
\end{enumerate}
\end{proof}
\end{fact}
\end{document}
?