写长表达式的最佳方式

写长表达式的最佳方式

我解决了一个方程组并得到了每个变量的 32 个解,但是乳胶让我感到厌烦,因为我找不到输出结果的方法。

\subsection{EPs with CFR}
\subsubsection{y1=0 and solving the rest of the system by symbolic matlab}
 \paragraph*{x1}
\begin{align*}
 x_{1}^{(1)}=\quad& \frac{N\,\epsilon _{1}\,r_{1}+K_{22}\,N\,\epsilon _{1}\,f_{11}+K_{22}\,N\,f_{11}\,g_{12}\,y_{2}}{K_{22}\,N\,\beta _{11}\,{f_{11}}^2+\epsilon _{1}\,\eta _{11}\,r_{1}}\\
 x_{1}^{(i=2,3,4,5,9,12,13,14,15,19,22,24,25,28,30,31)}=\quad& 0\\ 
 x_{1}^{(7)}=\quad& \frac{N\,\epsilon _{1}\,\eta _{12}\,\eta _{24}\,r_{1}\,r_{2}\,r_{4}-N\,\epsilon _{1}\,\eta _{14}\,\eta _{22}\,r_{1}\,r_{2}\,r_{4}-N\,\epsilon _{1}\,\eta _{12}\,\eta _{44}\,r_{1}\,r_{2}\,r_{4}+N\,\epsilon _{1}\,\eta _{14}\,\eta _{42}\,r_{1}\,r_{2}\,r_{4}+N\,\epsilon _{1}\,\eta _{22}\,\eta _{44}\,r_{1}\,r_{2}\,r_{4}-N\,\epsilon _{1}\,\eta _{24}\,\eta _{42}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N^2\,\beta _{21}\,\eta _{14}\,{f_{21}}^2\,r_{1}\,r_{4}+K_{22}\,N^2\,\beta _{21}\,\eta _{44}\,{f_{21}}^2\,r_{1}\,r_{4}-K_{22}\,N^2\,\beta _{41}\,\eta _{12}\,{f_{41}}^2\,r_{1}\,r_{2}+K_{22}\,N^2\,\beta _{41}\,\eta _{22}\,{f_{41}}^2\,r_{1}\,r_{2}+K_{22}\,N\,\epsilon _{1}\,\eta _{12}\,\eta _{24}\,f_{41}\,r_{1}\,r_{2}-K_{22}\,N\,\epsilon _{1}\,\eta _{14}\,\eta _{22}\,f_{41}\,r_{1}\,r_{2}-K_{22}\,N\,\epsilon _{1}\,\eta _{12}\,\eta _{44}\,f_{21}\,r_{1}\,r_{4}+K_{22}\,N\,\epsilon _{1}\,\eta _{14}\,\eta _{42}\,f_{21}\,r_{1}\,r_{4}+K_{22}\,N\,\epsilon _{1}\,\eta _{22}\,\eta _{44}\,f_{11}\,r_{2}\,r_{4}-K_{22}\,N\,\epsilon _{1}\,\eta _{24}\,\eta _{42}\,f_{11}\,r_{2}\,r_{4}+K_{22}\,N^2\,\beta _{21}\,\eta _{24}\,f_{11}\,f_{21}\,r_{2}\,r_{4}+K_{22}\,N^2\,\beta _{21}\,\eta _{14}\,f_{21}\,f_{41}\,r_{1}\,r_{2}-K_{22}\,N^2\,\beta _{21}\,\eta _{44}\,f_{11}\,f_{21}\,r_{2}\,r_{4}-K_{22}\,N^2\,\beta _{21}\,\eta _{24}\,f_{21}\,f_{41}\,r_{1}\,r_{2}+K_{22}\,N^2\,\beta _{41}\,\eta _{12}\,f_{21}\,f_{41}\,r_{1}\,r_{4}-K_{22}\,N^2\,\beta _{41}\,\eta _{22}\,f_{11}\,f_{41}\,r_{2}\,r_{4}+K_{22}\,N^2\,\beta _{41}\,\eta _{42}\,f_{11}\,f_{41}\,r_{2}\,r_{4}-K_{22}\,N^2\,\beta _{41}\,\eta _{42}\,f_{21}\,f_{41}\,r_{1}\,r_{4}+K_{22}\,N\,\eta _{12}\,\eta _{24}\,f_{41}\,g_{12}\,r_{1}\,r_{2}\,y_{2}-K_{22}\,N\,\eta _{14}\,\eta _{22}\,f_{41}\,g_{12}\,r_{1}\,r_{2}\,y_{2}-K_{22}\,N\,\eta _{12}\,\eta _{44}\,f_{21}\,g_{12}\,r_{1}\,r_{4}\,y_{2}+K_{22}\,N\,\eta _{14}\,\eta _{42}\,f_{21}\,g_{12}\,r_{1}\,r_{4}\,y_{2}+K_{22}\,N\,\eta _{22}\,\eta _{44}\,f_{11}\,g_{12}\,r_{2}\,r_{4}\,y_{2}-K_{22}\,N\,\eta _{24}\,\eta _{42}\,f_{11}\,g_{12}\,r_{2}\,r_{4}\,y_{2}}{\epsilon _{1}\,\eta _{11}\,\eta _{22}\,\eta _{44}\,r_{1}\,r_{2}\,r_{4}-\epsilon _{1}\,\eta _{11}\,\eta _{24}\,\eta _{42}\,r_{1}\,r_{2}\,r_{4}-\epsilon _{1}\,\eta _{12}\,\eta _{21}\,\eta _{44}\,r_{1}\,r_{2}\,r_{4}+\epsilon _{1}\,\eta _{12}\,\eta _{24}\,\eta _{41}\,r_{1}\,r_{2}\,r_{4}+\epsilon _{1}\,\eta _{14}\,\eta _{21}\,\eta _{42}\,r_{1}\,r_{2}\,r_{4}-\epsilon _{1}\,\eta _{14}\,\eta _{22}\,\eta _{41}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{22}\,\eta _{44}\,{f_{11}}^2\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{24}\,\eta _{42}\,{f_{11}}^2\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{11}\,\eta _{44}\,{f_{21}}^2\,r_{1}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{14}\,\eta _{41}\,{f_{21}}^2\,r_{1}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{11}\,\eta _{22}\,{f_{41}}^2\,r_{1}\,r_{2}-K_{22}\,N\,\beta _{41}\,\eta _{12}\,\eta _{21}\,{f_{41}}^2\,r_{1}\,r_{2}+K_{22}\,N\,\beta _{11}\,\eta _{12}\,\eta _{24}\,f_{11}\,f_{41}\,r_{1}\,r_{2}-K_{22}\,N\,\beta _{11}\,\eta _{14}\,\eta _{22}\,f_{11}\,f_{41}\,r_{1}\,r_{2}-K_{22}\,N\,\beta _{11}\,\eta _{12}\,\eta _{44}\,f_{11}\,f_{21}\,r_{1}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{14}\,\eta _{42}\,f_{11}\,f_{21}\,r_{1}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{11}\,\eta _{24}\,f_{21}\,f_{41}\,r_{1}\,r_{2}+K_{22}\,N\,\beta _{21}\,\eta _{14}\,\eta _{21}\,f_{21}\,f_{41}\,r_{1}\,r_{2}-K_{22}\,N\,\beta _{21}\,\eta _{21}\,\eta _{44}\,f_{11}\,f_{21}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{24}\,\eta _{41}\,f_{11}\,f_{21}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{11}\,\eta _{42}\,f_{21}\,f_{41}\,r_{1}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{12}\,\eta _{41}\,f_{21}\,f_{41}\,r_{1}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{21}\,\eta _{42}\,f_{11}\,f_{41}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{22}\,\eta _{41}\,f_{11}\,f_{41}\,r_{2}\,r_{4}}\\ 
x_{1}^{(32)}=\quad&-\frac{Nu_{1}^{(32)}}{D_{1}^{(32)}}
D_{1}^{(32)}=\quad&\epsilon _{1}\,\eta _{11}\,\eta _{22}\,\eta _{33}\,\eta _{44}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{11}\,\eta _{22}\,\eta _{34}\,\eta _{43}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{11}\,\eta _{23}\,\eta _{32}\,\eta _{44}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{11}\,\eta _{23}\,\eta _{34}\,\eta _{42}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{11}\,\eta _{24}\,\eta _{32}\,\eta _{43}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{11}\,\eta _{24}\,\eta _{33}\,\eta _{42}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{12}\,\eta _{21}\,\eta _{33}\,\eta _{44}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{12}\,\eta _{21}\,\eta _{34}\,\eta _{43}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{12}\,\eta _{23}\,\eta _{31}\,\eta _{44}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{12}\,\eta _{23}\,\eta _{34}\,\eta _{41}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{12}\,\eta _{24}\,\eta _{31}\,\eta _{43}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{12}\,\eta _{24}\,\eta _{33}\,\eta _{41}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{13}\,\eta _{21}\,\eta _{32}\,\eta _{44}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{13}\,\eta _{21}\,\eta _{34}\,\eta _{42}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{13}\,\eta _{22}\,\eta _{31}\,\eta _{44}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{13}\,\eta _{22}\,\eta _{34}\,\eta _{41}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{13}\,\eta _{24}\,\eta _{31}\,\eta _{42}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{13}\,\eta _{24}\,\eta _{32}\,\eta _{41}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{14}\,\eta _{21}\,\eta _{32}\,\eta _{43}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{14}\,\eta _{21}\,\eta _{33}\,\eta _{42}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{14}\,\eta _{22}\,\eta _{31}\,\eta _{43}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{14}\,\eta _{22}\,\eta _{33}\,\eta _{41}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{14}\,\eta _{23}\,\eta _{31}\,\eta _{42}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{14}\,\eta _{23}\,\eta _{32}\,\eta _{41}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{22}\,\eta _{33}\,\eta _{44}\,{f_{11}}^2\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{22}\,\eta _{34}\,\eta _{43}\,{f_{11}}^2\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{23}\,\eta _{32}\,\eta _{44}\,{f_{11}}^2\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{23}\,\eta _{34}\,\eta _{42}\,{f_{11}}^2\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{24}\,\eta _{32}\,\eta _{43}\,{f_{11}}^2\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{24}\,\eta _{33}\,\eta _{42}\,{f_{11}}^2\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{11}\,\eta _{33}\,\eta _{44}\,{f_{21}}^2\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{11}\,\eta _{34}\,\eta _{43}\,{f_{21}}^2\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{13}\,\eta _{31}\,\eta _{44}\,{f_{21}}^2\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{13}\,\eta _{34}\,\eta _{41}\,{f_{21}}^2\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{14}\,\eta _{31}\,\eta _{43}\,{f_{21}}^2\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{14}\,\eta _{33}\,\eta _{41}\,{f_{21}}^2\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{11}\,\eta _{22}\,\eta _{44}\,{f_{31}}^2\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{11}\,\eta _{24}\,\eta _{42}\,{f_{31}}^2\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{12}\,\eta _{21}\,\eta _{44}\,{f_{31}}^2\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{12}\,\eta _{24}\,\eta _{41}\,{f_{31}}^2\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{14}\,\eta _{21}\,\eta _{42}\,{f_{31}}^2\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{14}\,\eta _{22}\,\eta _{41}\,{f_{31}}^2\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{11}\,\eta _{22}\,\eta _{33}\,{f_{41}}^2\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{41}\,\eta _{11}\,\eta _{23}\,\eta _{32}\,{f_{41}}^2\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{41}\,\eta _{12}\,\eta _{21}\,\eta _{33}\,{f_{41}}^2\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{41}\,\eta _{12}\,\eta _{23}\,\eta _{31}\,{f_{41}}^2\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{41}\,\eta _{13}\,\eta _{21}\,\eta _{32}\,{f_{41}}^2\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{41}\,\eta _{13}\,\eta _{22}\,\eta _{31}\,{f_{41}}^2\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{11}\,\eta _{12}\,\eta _{23}\,\eta _{34}\,f_{11}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{11}\,\eta _{12}\,\eta _{24}\,\eta _{33}\,f_{11}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{11}\,\eta _{13}\,\eta _{22}\,\eta _{34}\,f_{11}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{11}\,\eta _{13}\,\eta _{24}\,\eta _{32}\,f_{11}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{11}\,\eta _{14}\,\eta _{22}\,\eta _{33}\,f_{11}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{11}\,\eta _{14}\,\eta _{23}\,\eta _{32}\,f_{11}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{11}\,\eta _{12}\,\eta _{23}\,\eta _{44}\,f_{11}\,f_{31}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{12}\,\eta _{24}\,\eta _{43}\,f_{11}\,f_{31}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{13}\,\eta _{22}\,\eta _{44}\,f_{11}\,f_{31}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{13}\,\eta _{24}\,\eta _{42}\,f_{11}\,f_{31}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{14}\,\eta _{22}\,\eta _{43}\,f_{11}\,f_{31}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{14}\,\eta _{23}\,\eta _{42}\,f_{11}\,f_{31}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{12}\,\eta _{33}\,\eta _{44}\,f_{11}\,f_{21}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{12}\,\eta _{34}\,\eta _{43}\,f_{11}\,f_{21}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{13}\,\eta _{32}\,\eta _{44}\,f_{11}\,f_{21}\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{13}\,\eta _{34}\,\eta _{42}\,f_{11}\,f_{21}\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{14}\,\eta _{32}\,\eta _{43}\,f_{11}\,f_{21}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{14}\,\eta _{33}\,\eta _{42}\,f_{11}\,f_{21}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{11}\,\eta _{23}\,\eta _{34}\,f_{21}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{21}\,\eta _{11}\,\eta _{24}\,\eta _{33}\,f_{21}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{21}\,\eta _{13}\,\eta _{21}\,\eta _{34}\,f_{21}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{21}\,\eta _{13}\,\eta _{24}\,\eta _{31}\,f_{21}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{21}\,\eta _{14}\,\eta _{21}\,\eta _{33}\,f_{21}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{21}\,\eta _{14}\,\eta _{23}\,\eta _{31}\,f_{21}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{21}\,\eta _{11}\,\eta _{23}\,\eta _{44}\,f_{21}\,f_{31}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{11}\,\eta _{24}\,\eta _{43}\,f_{21}\,f_{31}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{13}\,\eta _{21}\,\eta _{44}\,f_{21}\,f_{31}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{13}\,\eta _{24}\,\eta _{41}\,f_{21}\,f_{31}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{14}\,\eta _{21}\,\eta _{43}\,f_{21}\,f_{31}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{14}\,\eta _{23}\,\eta _{41}\,f_{21}\,f_{31}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{21}\,\eta _{33}\,\eta _{44}\,f_{11}\,f_{21}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{21}\,\eta _{34}\,\eta _{43}\,f_{11}\,f_{21}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{23}\,\eta _{31}\,\eta _{44}\,f_{11}\,f_{21}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{23}\,\eta _{34}\,\eta _{41}\,f_{11}\,f_{21}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{24}\,\eta _{31}\,\eta _{43}\,f_{11}\,f_{21}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{24}\,\eta _{33}\,\eta _{41}\,f_{11}\,f_{21}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{11}\,\eta _{22}\,\eta _{34}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{31}\,\eta _{11}\,\eta _{24}\,\eta _{32}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{31}\,\eta _{12}\,\eta _{21}\,\eta _{34}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{31}\,\eta _{12}\,\eta _{24}\,\eta _{31}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{31}\,\eta _{14}\,\eta _{21}\,\eta _{32}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{31}\,\eta _{14}\,\eta _{22}\,\eta _{31}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{31}\,\eta _{11}\,\eta _{32}\,\eta _{44}\,f_{21}\,f_{31}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{11}\,\eta _{34}\,\eta _{42}\,f_{21}\,f_{31}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{12}\,\eta _{31}\,\eta _{44}\,f_{21}\,f_{31}\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{12}\,\eta _{34}\,\eta _{41}\,f_{21}\,f_{31}\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{14}\,\eta _{31}\,\eta _{42}\,f_{21}\,f_{31}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{14}\,\eta _{32}\,\eta _{41}\,f_{21}\,f_{31}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{21}\,\eta _{32}\,\eta _{44}\,f_{11}\,f_{31}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{21}\,\eta _{34}\,\eta _{42}\,f_{11}\,f_{31}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{22}\,\eta _{31}\,\eta _{44}\,f_{11}\,f_{31}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{22}\,\eta _{34}\,\eta _{41}\,f_{11}\,f_{31}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{24}\,\eta _{31}\,\eta _{42}\,f_{11}\,f_{31}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{24}\,\eta _{32}\,\eta _{41}\,f_{11}\,f_{31}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{11}\,\eta _{22}\,\eta _{43}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{11}\,\eta _{23}\,\eta _{42}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{12}\,\eta _{21}\,\eta _{43}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{12}\,\eta _{23}\,\eta _{41}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{13}\,\eta _{21}\,\eta _{42}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{13}\,\eta _{22}\,\eta _{41}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{11}\,\eta _{32}\,\eta _{43}\,f_{21}\,f_{41}\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{11}\,\eta _{33}\,\eta _{42}\,f_{21}\,f_{41}\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{12}\,\eta _{31}\,\eta _{43}\,f_{21}\,f_{41}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{12}\,\eta _{33}\,\eta _{41}\,f_{21}\,f_{41}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{13}\,\eta _{31}\,\eta _{42}\,f_{21}\,f_{41}\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{13}\,\eta _{32}\,\eta _{41}\,f_{21}\,f_{41}\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{21}\,\eta _{32}\,\eta _{43}\,f_{11}\,f_{41}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{21}\,\eta _{33}\,\eta _{42}\,f_{11}\,f_{41}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{22}\,\eta _{31}\,\eta _{43}\,f_{11}\,f_{41}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{22}\,\eta _{33}\,\eta _{41}\,f_{11}\,f_{41}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{23}\,\eta _{31}\,\eta _{42}\,f_{11}\,f_{41}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{23}\,\eta _{32}\,\eta _{41}\,f_{11}\,f_{41}\,r_{2}\,r_{3}\,r_{4}
\end{align*}

我不断收到如下错误:

Dimension too large. \end{align*}

或者

Huge page cannot be shipped out. 

什么都没有出来。我尝试使用多重对齐进行拆分,但没有结果。

有办法解决这个问题吗?

答案1

使用允许换行的内联文本样式数学来设置这种大型机械生成的表达式通常会更好。

在此处输入图片描述

\documentclass{article}

\usepackage{amsmath}

\begin{document}
\subsection{EPs with CFR}
\subsubsection{y1=0 and solving the rest of the system by symbolic matlab}
 \paragraph*{x1}

 \begin{flushleft}
 \def\frac#1#2{(#1)/(#2)}
$
x_{1}^{(1)}=\quad \frac{N\,\epsilon _{1}\,r_{1}+K_{22}\,N\,\epsilon _{1}\,f_{11}+K_{22}\,N\,f_{11}\,g_{12}\,y_{2}}{K_{22}\,N\,\beta _{11}\,{f_{11}}^2+\epsilon _{1}\,\eta _{11}\,r_{1}}$\\
$x_{1}^{(i=2,3,4,5,9,12,13,14,15,19,22,24,25,28,30,31)}=\quad 0$\\ 
$x_{1}^{(7)}=\quad \frac{N\,\epsilon _{1}\,\eta _{12}\,\eta _{24}\,r_{1}\,r_{2}\,r_{4}-N\,\epsilon _{1}\,\eta _{14}\,\eta _{22}\,r_{1}\,r_{2}\,r_{4}-N\,\epsilon _{1}\,\eta _{12}\,\eta _{44}\,r_{1}\,r_{2}\,r_{4}+N\,\epsilon _{1}\,\eta _{14}\,\eta _{42}\,r_{1}\,r_{2}\,r_{4}+N\,\epsilon _{1}\,\eta _{22}\,\eta _{44}\,r_{1}\,r_{2}\,r_{4}-N\,\epsilon _{1}\,\eta _{24}\,\eta _{42}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N^2\,\beta _{21}\,\eta _{14}\,{f_{21}}^2\,r_{1}\,r_{4}+K_{22}\,N^2\,\beta _{21}\,\eta _{44}\,{f_{21}}^2\,r_{1}\,r_{4}-K_{22}\,N^2\,\beta _{41}\,\eta _{12}\,{f_{41}}^2\,r_{1}\,r_{2}+K_{22}\,N^2\,\beta _{41}\,\eta _{22}\,{f_{41}}^2\,r_{1}\,r_{2}+K_{22}\,N\,\epsilon _{1}\,\eta _{12}\,\eta _{24}\,f_{41}\,r_{1}\,r_{2}-K_{22}\,N\,\epsilon _{1}\,\eta _{14}\,\eta _{22}\,f_{41}\,r_{1}\,r_{2}-K_{22}\,N\,\epsilon _{1}\,\eta _{12}\,\eta _{44}\,f_{21}\,r_{1}\,r_{4}+K_{22}\,N\,\epsilon _{1}\,\eta _{14}\,\eta _{42}\,f_{21}\,r_{1}\,r_{4}+K_{22}\,N\,\epsilon _{1}\,\eta _{22}\,\eta _{44}\,f_{11}\,r_{2}\,r_{4}-K_{22}\,N\,\epsilon _{1}\,\eta _{24}\,\eta _{42}\,f_{11}\,r_{2}\,r_{4}+K_{22}\,N^2\,\beta _{21}\,\eta _{24}\,f_{11}\,f_{21}\,r_{2}\,r_{4}+K_{22}\,N^2\,\beta _{21}\,\eta _{14}\,f_{21}\,f_{41}\,r_{1}\,r_{2}-K_{22}\,N^2\,\beta _{21}\,\eta _{44}\,f_{11}\,f_{21}\,r_{2}\,r_{4}-K_{22}\,N^2\,\beta _{21}\,\eta _{24}\,f_{21}\,f_{41}\,r_{1}\,r_{2}+K_{22}\,N^2\,\beta _{41}\,\eta _{12}\,f_{21}\,f_{41}\,r_{1}\,r_{4}-K_{22}\,N^2\,\beta _{41}\,\eta _{22}\,f_{11}\,f_{41}\,r_{2}\,r_{4}+K_{22}\,N^2\,\beta _{41}\,\eta _{42}\,f_{11}\,f_{41}\,r_{2}\,r_{4}-K_{22}\,N^2\,\beta _{41}\,\eta _{42}\,f_{21}\,f_{41}\,r_{1}\,r_{4}+K_{22}\,N\,\eta _{12}\,\eta _{24}\,f_{41}\,g_{12}\,r_{1}\,r_{2}\,y_{2}-K_{22}\,N\,\eta _{14}\,\eta _{22}\,f_{41}\,g_{12}\,r_{1}\,r_{2}\,y_{2}-K_{22}\,N\,\eta _{12}\,\eta _{44}\,f_{21}\,g_{12}\,r_{1}\,r_{4}\,y_{2}+K_{22}\,N\,\eta _{14}\,\eta _{42}\,f_{21}\,g_{12}\,r_{1}\,r_{4}\,y_{2}+K_{22}\,N\,\eta _{22}\,\eta _{44}\,f_{11}\,g_{12}\,r_{2}\,r_{4}\,y_{2}-K_{22}\,N\,\eta _{24}\,\eta _{42}\,f_{11}\,g_{12}\,r_{2}\,r_{4}\,y_{2}}{\epsilon _{1}\,\eta _{11}\,\eta _{22}\,\eta _{44}\,r_{1}\,r_{2}\,r_{4}-\epsilon _{1}\,\eta _{11}\,\eta _{24}\,\eta _{42}\,r_{1}\,r_{2}\,r_{4}-\epsilon _{1}\,\eta _{12}\,\eta _{21}\,\eta _{44}\,r_{1}\,r_{2}\,r_{4}+\epsilon _{1}\,\eta _{12}\,\eta _{24}\,\eta _{41}\,r_{1}\,r_{2}\,r_{4}+\epsilon _{1}\,\eta _{14}\,\eta _{21}\,\eta _{42}\,r_{1}\,r_{2}\,r_{4}-\epsilon _{1}\,\eta _{14}\,\eta _{22}\,\eta _{41}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{22}\,\eta _{44}\,{f_{11}}^2\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{24}\,\eta _{42}\,{f_{11}}^2\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{11}\,\eta _{44}\,{f_{21}}^2\,r_{1}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{14}\,\eta _{41}\,{f_{21}}^2\,r_{1}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{11}\,\eta _{22}\,{f_{41}}^2\,r_{1}\,r_{2}-K_{22}\,N\,\beta _{41}\,\eta _{12}\,\eta _{21}\,{f_{41}}^2\,r_{1}\,r_{2}+K_{22}\,N\,\beta _{11}\,\eta _{12}\,\eta _{24}\,f_{11}\,f_{41}\,r_{1}\,r_{2}-K_{22}\,N\,\beta _{11}\,\eta _{14}\,\eta _{22}\,f_{11}\,f_{41}\,r_{1}\,r_{2}-K_{22}\,N\,\beta _{11}\,\eta _{12}\,\eta _{44}\,f_{11}\,f_{21}\,r_{1}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{14}\,\eta _{42}\,f_{11}\,f_{21}\,r_{1}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{11}\,\eta _{24}\,f_{21}\,f_{41}\,r_{1}\,r_{2}+K_{22}\,N\,\beta _{21}\,\eta _{14}\,\eta _{21}\,f_{21}\,f_{41}\,r_{1}\,r_{2}-K_{22}\,N\,\beta _{21}\,\eta _{21}\,\eta _{44}\,f_{11}\,f_{21}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{24}\,\eta _{41}\,f_{11}\,f_{21}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{11}\,\eta _{42}\,f_{21}\,f_{41}\,r_{1}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{12}\,\eta _{41}\,f_{21}\,f_{41}\,r_{1}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{21}\,\eta _{42}\,f_{11}\,f_{41}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{22}\,\eta _{41}\,f_{11}\,f_{41}\,r_{2}\,r_{4}}$\\
$x_{1}^{(32)}=\quad-\frac{Nu_{1}^{(32)}}{D_{1}^{(32)}}
D_{1}^{(32)}=\quad\epsilon _{1}\,\eta _{11}\,\eta _{22}\,\eta _{33}\,\eta _{44}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{11}\,\eta _{22}\,\eta _{34}\,\eta _{43}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{11}\,\eta _{23}\,\eta _{32}\,\eta _{44}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{11}\,\eta _{23}\,\eta _{34}\,\eta _{42}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{11}\,\eta _{24}\,\eta _{32}\,\eta _{43}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{11}\,\eta _{24}\,\eta _{33}\,\eta _{42}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{12}\,\eta _{21}\,\eta _{33}\,\eta _{44}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{12}\,\eta _{21}\,\eta _{34}\,\eta _{43}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{12}\,\eta _{23}\,\eta _{31}\,\eta _{44}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{12}\,\eta _{23}\,\eta _{34}\,\eta _{41}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{12}\,\eta _{24}\,\eta _{31}\,\eta _{43}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{12}\,\eta _{24}\,\eta _{33}\,\eta _{41}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{13}\,\eta _{21}\,\eta _{32}\,\eta _{44}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{13}\,\eta _{21}\,\eta _{34}\,\eta _{42}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{13}\,\eta _{22}\,\eta _{31}\,\eta _{44}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{13}\,\eta _{22}\,\eta _{34}\,\eta _{41}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{13}\,\eta _{24}\,\eta _{31}\,\eta _{42}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{13}\,\eta _{24}\,\eta _{32}\,\eta _{41}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{14}\,\eta _{21}\,\eta _{32}\,\eta _{43}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{14}\,\eta _{21}\,\eta _{33}\,\eta _{42}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{14}\,\eta _{22}\,\eta _{31}\,\eta _{43}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{14}\,\eta _{22}\,\eta _{33}\,\eta _{41}\,r_{1}\,r_{2}\,r_{3}\,r_{4}-\epsilon _{1}\,\eta _{14}\,\eta _{23}\,\eta _{31}\,\eta _{42}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+\epsilon _{1}\,\eta _{14}\,\eta _{23}\,\eta _{32}\,\eta _{41}\,r_{1}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{22}\,\eta _{33}\,\eta _{44}\,{f_{11}}^2\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{22}\,\eta _{34}\,\eta _{43}\,{f_{11}}^2\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{23}\,\eta _{32}\,\eta _{44}\,{f_{11}}^2\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{23}\,\eta _{34}\,\eta _{42}\,{f_{11}}^2\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{24}\,\eta _{32}\,\eta _{43}\,{f_{11}}^2\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{24}\,\eta _{33}\,\eta _{42}\,{f_{11}}^2\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{11}\,\eta _{33}\,\eta _{44}\,{f_{21}}^2\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{11}\,\eta _{34}\,\eta _{43}\,{f_{21}}^2\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{13}\,\eta _{31}\,\eta _{44}\,{f_{21}}^2\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{13}\,\eta _{34}\,\eta _{41}\,{f_{21}}^2\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{14}\,\eta _{31}\,\eta _{43}\,{f_{21}}^2\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{14}\,\eta _{33}\,\eta _{41}\,{f_{21}}^2\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{11}\,\eta _{22}\,\eta _{44}\,{f_{31}}^2\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{11}\,\eta _{24}\,\eta _{42}\,{f_{31}}^2\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{12}\,\eta _{21}\,\eta _{44}\,{f_{31}}^2\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{12}\,\eta _{24}\,\eta _{41}\,{f_{31}}^2\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{14}\,\eta _{21}\,\eta _{42}\,{f_{31}}^2\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{14}\,\eta _{22}\,\eta _{41}\,{f_{31}}^2\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{11}\,\eta _{22}\,\eta _{33}\,{f_{41}}^2\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{41}\,\eta _{11}\,\eta _{23}\,\eta _{32}\,{f_{41}}^2\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{41}\,\eta _{12}\,\eta _{21}\,\eta _{33}\,{f_{41}}^2\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{41}\,\eta _{12}\,\eta _{23}\,\eta _{31}\,{f_{41}}^2\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{41}\,\eta _{13}\,\eta _{21}\,\eta _{32}\,{f_{41}}^2\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{41}\,\eta _{13}\,\eta _{22}\,\eta _{31}\,{f_{41}}^2\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{11}\,\eta _{12}\,\eta _{23}\,\eta _{34}\,f_{11}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{11}\,\eta _{12}\,\eta _{24}\,\eta _{33}\,f_{11}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{11}\,\eta _{13}\,\eta _{22}\,\eta _{34}\,f_{11}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{11}\,\eta _{13}\,\eta _{24}\,\eta _{32}\,f_{11}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{11}\,\eta _{14}\,\eta _{22}\,\eta _{33}\,f_{11}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{11}\,\eta _{14}\,\eta _{23}\,\eta _{32}\,f_{11}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{11}\,\eta _{12}\,\eta _{23}\,\eta _{44}\,f_{11}\,f_{31}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{12}\,\eta _{24}\,\eta _{43}\,f_{11}\,f_{31}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{13}\,\eta _{22}\,\eta _{44}\,f_{11}\,f_{31}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{13}\,\eta _{24}\,\eta _{42}\,f_{11}\,f_{31}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{14}\,\eta _{22}\,\eta _{43}\,f_{11}\,f_{31}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{14}\,\eta _{23}\,\eta _{42}\,f_{11}\,f_{31}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{12}\,\eta _{33}\,\eta _{44}\,f_{11}\,f_{21}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{12}\,\eta _{34}\,\eta _{43}\,f_{11}\,f_{21}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{13}\,\eta _{32}\,\eta _{44}\,f_{11}\,f_{21}\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{13}\,\eta _{34}\,\eta _{42}\,f_{11}\,f_{21}\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{11}\,\eta _{14}\,\eta _{32}\,\eta _{43}\,f_{11}\,f_{21}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{11}\,\eta _{14}\,\eta _{33}\,\eta _{42}\,f_{11}\,f_{21}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{11}\,\eta _{23}\,\eta _{34}\,f_{21}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{21}\,\eta _{11}\,\eta _{24}\,\eta _{33}\,f_{21}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{21}\,\eta _{13}\,\eta _{21}\,\eta _{34}\,f_{21}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{21}\,\eta _{13}\,\eta _{24}\,\eta _{31}\,f_{21}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{21}\,\eta _{14}\,\eta _{21}\,\eta _{33}\,f_{21}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{21}\,\eta _{14}\,\eta _{23}\,\eta _{31}\,f_{21}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{21}\,\eta _{11}\,\eta _{23}\,\eta _{44}\,f_{21}\,f_{31}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{11}\,\eta _{24}\,\eta _{43}\,f_{21}\,f_{31}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{13}\,\eta _{21}\,\eta _{44}\,f_{21}\,f_{31}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{13}\,\eta _{24}\,\eta _{41}\,f_{21}\,f_{31}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{14}\,\eta _{21}\,\eta _{43}\,f_{21}\,f_{31}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{14}\,\eta _{23}\,\eta _{41}\,f_{21}\,f_{31}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{21}\,\eta _{33}\,\eta _{44}\,f_{11}\,f_{21}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{21}\,\eta _{34}\,\eta _{43}\,f_{11}\,f_{21}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{23}\,\eta _{31}\,\eta _{44}\,f_{11}\,f_{21}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{23}\,\eta _{34}\,\eta _{41}\,f_{11}\,f_{21}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{21}\,\eta _{24}\,\eta _{31}\,\eta _{43}\,f_{11}\,f_{21}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{21}\,\eta _{24}\,\eta _{33}\,\eta _{41}\,f_{11}\,f_{21}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{11}\,\eta _{22}\,\eta _{34}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{31}\,\eta _{11}\,\eta _{24}\,\eta _{32}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{31}\,\eta _{12}\,\eta _{21}\,\eta _{34}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{31}\,\eta _{12}\,\eta _{24}\,\eta _{31}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{31}\,\eta _{14}\,\eta _{21}\,\eta _{32}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{3}+K_{22}\,N\,\beta _{31}\,\eta _{14}\,\eta _{22}\,\eta _{31}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{3}-K_{22}\,N\,\beta _{31}\,\eta _{11}\,\eta _{32}\,\eta _{44}\,f_{21}\,f_{31}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{11}\,\eta _{34}\,\eta _{42}\,f_{21}\,f_{31}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{12}\,\eta _{31}\,\eta _{44}\,f_{21}\,f_{31}\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{12}\,\eta _{34}\,\eta _{41}\,f_{21}\,f_{31}\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{14}\,\eta _{31}\,\eta _{42}\,f_{21}\,f_{31}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{14}\,\eta _{32}\,\eta _{41}\,f_{21}\,f_{31}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{21}\,\eta _{32}\,\eta _{44}\,f_{11}\,f_{31}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{21}\,\eta _{34}\,\eta _{42}\,f_{11}\,f_{31}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{22}\,\eta _{31}\,\eta _{44}\,f_{11}\,f_{31}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{22}\,\eta _{34}\,\eta _{41}\,f_{11}\,f_{31}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{31}\,\eta _{24}\,\eta _{31}\,\eta _{42}\,f_{11}\,f_{31}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{31}\,\eta _{24}\,\eta _{32}\,\eta _{41}\,f_{11}\,f_{31}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{11}\,\eta _{22}\,\eta _{43}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{11}\,\eta _{23}\,\eta _{42}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{12}\,\eta _{21}\,\eta _{43}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{12}\,\eta _{23}\,\eta _{41}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{13}\,\eta _{21}\,\eta _{42}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{13}\,\eta _{22}\,\eta _{41}\,f_{31}\,f_{41}\,r_{1}\,r_{2}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{11}\,\eta _{32}\,\eta _{43}\,f_{21}\,f_{41}\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{11}\,\eta _{33}\,\eta _{42}\,f_{21}\,f_{41}\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{12}\,\eta _{31}\,\eta _{43}\,f_{21}\,f_{41}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{12}\,\eta _{33}\,\eta _{41}\,f_{21}\,f_{41}\,r_{1}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{13}\,\eta _{31}\,\eta _{42}\,f_{21}\,f_{41}\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{13}\,\eta _{32}\,\eta _{41}\,f_{21}\,f_{41}\,r_{1}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{21}\,\eta _{32}\,\eta _{43}\,f_{11}\,f_{41}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{21}\,\eta _{33}\,\eta _{42}\,f_{11}\,f_{41}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{22}\,\eta _{31}\,\eta _{43}\,f_{11}\,f_{41}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{22}\,\eta _{33}\,\eta _{41}\,f_{11}\,f_{41}\,r_{2}\,r_{3}\,r_{4}-K_{22}\,N\,\beta _{41}\,\eta _{23}\,\eta _{31}\,\eta _{42}\,f_{11}\,f_{41}\,r_{2}\,r_{3}\,r_{4}+K_{22}\,N\,\beta _{41}\,\eta _{23}\,\eta _{32}\,\eta _{41}\,f_{11}\,f_{41}\,r_{2}\,r_{3}\,r_{4}
$
\end{flushleft}

\end{document}

相关内容