我目前正在尝试使用元帖子制作通用 B 样条基绘图仪。
基函数的定义是维基百科在属性下。
ab 样条曲线的节点应具有模式 0,其次数等于样条曲线的顺序,一段时间内值不断增加,最后一个值重复以匹配顺序
例如对于 3 阶样条曲线:[0,0,0,1,2,3,4,5,6,6,6] 会生成一个节点向量。
为此,我尝试编写该精确公式并打印我制作的结矢量,以确保我做的事情正确:
上面是 2 阶样条函数之一,它应该看起来像一个线性上升然后下降的函数(金字塔),但它看起来像 1 阶基函数。我尝试更改顺序,但我的所有函数都返回相同的模式。
我的代码如下;
\documentclass[border=10cm]{standalone}
\usepackage{luamplib}
\mplibnumbersystem{double}
\usepackage[margin=0.5cm]{geometry}
\begin{document}
{\centering
\begin{mplibcode}
u:=1cm;
numeric knots[];
vardef make_knots(expr order, num)=
p_num = num - 1;
v = 0;
for i=0 upto order-1:
knots[i] := v;
endfor;
for i=0 upto p_num - order:
v := v+1;
knots[i + order] := v;
endfor;
for i=0 upto order-1:
knots[i + p_num + 1] := v;
endfor;
for i=0 upto order + p_num - 1:
tmp := round(knots[i]);
label.top(textext("\huge$"& decimal(tmp) &"$"), (2*i*u,6*u));
endfor;
enddef;
vardef calculate_basis(expr t, i, order)=
numeric ret;
if order=1:
if (t >= knots[i]) and (t < knots[i+1]):
ret = 1;
else:
ret = 0;
fi;
else:
ret =
((t-knots[i]) / (knots[i] + order - knots[i])) * calculate_basis(t, i, order-1)
+
((knots[i + order + 1] - t) / (knots[i + order + 1] - knots[i+1])) * calculate_basis(t, i+1, order-1);
fi;
ret
enddef;
color darkred, darkyellow, darkgreen, lightblue, brown, pink, orange;
darkred := (0.8,0.0,0.0);
darkyellow := (1.0,0.8,0.0);
darkgreen := (0.0,0.6,0.0);
lightblue := (0.0,0.8,1.0);
brown := (0.5, 0.1, 0.1);
pink := (1, 0.0, 0.8);
orange := (1, 0.4, 0.0);
%ignore first parameter while denbugging
vardef plot_basis(expr j, order, color)=
res := 100;
for i=0 upto res-1:
fraction := (i/res) * 6; %multiply by biggest knot value
valS := calculate_basis(fraction, 1, 3);
save pointS;
pair pointS;
pointS := ((i) * 2 / res, valS) * u * 5; %scale plot to make it visible
draw pointS withpen pencircle scaled 5bp withcolor color;
endfor;
enddef;
% Start figure
beginfig(0);
color colors[];
colors[0] = darkred;
colors[1] = darkyellow;
colors[2] = darkgreen;
colors[3] = lightblue;
colors[4] = pink;
colors[5] = brown;
colors[6] = orange;
make_knots(2, 8);
plot_basis(2, 2, colors[0]);
endfig;
\end{mplibcode}
\par}
\end{document}
答案1
我无法完全解释原因,但我确实有一个修复程序(我认为),并且可能还修复了几个拼写错误。在您的递归中(参见注释):
vardef calculate_basis(expr t, i, order)=
numeric ret;
if order=0: % I think this should be zero to match your screenshot
if (t >= knots[i]) and (t < knots[i+1]):
ret = 1;
else:
ret = 0;
fi;
else:
ret =
((t-knots[i]) / (knots[i + order] - knots[i])) * calculate_basis(t, i, order-1) % fixed typo in denominator of first fraction
+
((knots[i + order + 1] - t) / (knots[i + order + 1] - knots[i+1])) * calculate_basis(t, i+1, order-1);
fi;
ret
enddef;
在 else 情况下,我认为这ret
是以某种方式获取递归中评估的最终阶数为 0 的情况的值。我对 B 样条函数一无所知,也不太了解这里的分组、递归调用和方程求解如何相互作用。递归的工作原理让我感到困惑,因为它看起来扩展为类似
ret=stuff1*(ret=0)+stuff2*(ret=1)
这对我来说毫无意义。希望有人能解释原因并这样做。
无论如何,我都会这样编写递归:
vardef calculate_basis(expr t, i, order)=
if order=0:
if (t >= knots[i]) and (t < knots[i+1]):
1
else:
0
fi
else:
((t-knots[i]) / (knots[i + order] - knots[i])) * calculate_basis(t, i, order-1) % typo
+
((knots[i + order + 1] - t) / (knots[i + order + 1] - knots[i+1])) * calculate_basis(t, i+1, order-1)
fi
enddef;
并做出最后的改变后
valS := calculate_basis(fraction, 3, 1); % changed to first order
以下似乎产生了更接近您想要的结果(我不确定绘图基础循环中剩余的固定值来自哪里)。无论哪种方式,希望这能给你一个开始:
\documentclass[border=10cm]{standalone}
\usepackage{luamplib}
\mplibnumbersystem{double}
\mplibtextextlabel{enable}
\usepackage[margin=0.5cm]{geometry}
\begin{document}
{\centering
\begin{mplibcode}
u:=1cm;
numeric knots[];
vardef make_knots(expr order, num)=
p_num = num - 1;
v = 0;
for i=0 upto order-1:
knots[i] := v;
endfor;
for i=0 upto p_num - order:
v := v+1;
knots[i + order] := v;
endfor;
for i=0 upto order-1:
knots[i + p_num + 1] := v;
endfor;
for i=0 upto order + p_num - 1:
label.top("\huge$"& decimal(round(knots[i])) &"$", (2*i*u,6*u));
endfor;
enddef;
vardef calculate_basis(expr t, i, order)=
if order=0:
if (t >= knots[i]) and (t < knots[i+1]):
1
else:
0
fi
else:
((t-knots[i]) / (knots[i + order] - knots[i])) * calculate_basis(t, i, order-1) % typo
+
((knots[i + order + 1] - t) / (knots[i + order + 1] - knots[i+1])) * calculate_basis(t, i+1, order-1)
fi
enddef;
color darkred, darkyellow, darkgreen, lightblue, brown, pink, orange;
darkred := (0.8,0.0,0.0);
darkyellow := (1.0,0.8,0.0);
darkgreen := (0.0,0.6,0.0);
lightblue := (0.0,0.8,1.0);
brown := (0.5, 0.1, 0.1);
pink := (1, 0.0, 0.8);
orange := (1, 0.4, 0.0);
vardef plot_basis(expr order, color)=
res := 100;
pair pointS;
for i=0 upto res-1:
fraction := (i/res) * 6;
valS := calculate_basis(fraction, 3, 1); % changed to first order
pointS := ((i) * 2 / res, valS) * u * 5;
draw pointS withpen pencircle scaled 5bp withcolor color;
endfor;
enddef;
% Start figure
beginfig(0);
color colors[];
colors[0] = darkred;
colors[1] = darkyellow;
colors[2] = darkgreen;
colors[3] = lightblue;
colors[4] = pink;
colors[5] = brown;
colors[6] = orange;
make_knots(2, 8);
plot_basis(1, colors[0]);
endfig;
\end{mplibcode}
\par}
\end{document}