我想创建一个 2 列表,其中第一列水平和垂直居中,而第二列仅向左对齐。我想出了以下代码,但看起来不太好。你能给我一些建议吗?谢谢!
\begin{center}
\begin{tabularx}{\textwidth}{ p{30 mm} | >{\arraybackslash}X }
Cas & $\Delta_{\alpha}$ \\
\hline
$x_1 < x_2, y_1, y_2$ & $\alpha - \big[w_{22'} + \mu(1)(R_{max} - w_{21'} - w_{22'}) + \nu(1')(w_{21'} - w_{22'}) \big]$\\
\hline
$x_2 < x_1, y_1, y_2$ & $\alpha - \big[R_{max} - w_{11'} + \mu(1)(w_{11'} + w_{12'} - R_{max}) + \nu(1)(w_{11'} - w_{12'}) \big]$ \\
\hline
$y_1 < x_1, x_2, y_2$ & $\alpha - \big[w_{22'} + \mu(1)(w_{12'} - w_{22'}) + \nu(1)(R_{max} - w_{12'} - w_{22'}) \big]$ \\
\hline
$y_2 < x_1, x_2, y_1$ & $\alpha - \big[R_{max} - w_{11'} + \mu(1)(w_{11'} - w_{21'}) + \nu(1)(w_{11'} + w_{21'} - R_{max}) \big] $ \\
\hline
$x_1 = y_1 < x_2 = y_2$ & $\alpha - \big[w_{22'} + \mu(1)(w_{12'} - w_{22'}) + \nu(1')(w_{21'} - w_{22'}) + \mu(1) \nu(1') (R_{max} - w_{21'} - w_{12'}) \big]$\\
\hline
$x_1 = y_2 < x_2 = y_1$ & $\alpha - \big[w_{22'} + \mu(1)(R_{max} - w_{21'} - w_{22'}) + \nu(1')(w_{21'} - w_{22'}) + \mu(1) \nu(1') (w_{11'} - w_{22'} - R_{max}) \big]$ \\
\hline
$x_2 = y_1 < x_1 = y_2$ & $\alpha - \big[w_{22'} + \mu(1)(w_{12'} - w_{22'}) + \nu(1')(R_{max} - w_{12'} - w_{22'}) + \mu(1) \nu(1') (w_{11'} - w_{22'} - R_{max}) \big]$ \\
\hline
$x_2 = y_2 < x_1 = y_1$ & $\alpha - \big[R_{max} - w_{11'} + \mu(1)(w_{11'} + w_{12'} - R_{max}) + \nu(1')(w_{11'} + w_{21'} - R_{max}) + \mu(1) \nu(1') (R_{max} - w_{12'} - w_{21'}) \big]$ \\
\hline
$x_1 = x_2 = y_1 = y_2$ & $\alpha - \big[w_{22'} + \mu(1)(w_{12'} - w_{22'}) + \nu(1')(w_{21'} - w_{22'}) + \mu(1) \nu(1') (w_{11'} + w_{22'} - w_{12'} - w_{21'}) \big]$
\end{tabularx}
\end{center}
答案1
以下是一些建议(无特定顺序):
使用
c
而不是p
作为第一列的列类型。实际上,我认为l
这样更好,所以我在下面的代码中使用了它。继续使用
tabularx
环境,并运行\renewcommand\tabularxcolumn[1]{m{#1}}
以对非列实施垂直居中(而不是顶部对齐X
)使用
>{$}l<{$}
and>{$}L<{$}
而不是l
and来启用自动数学模式L
。这样,您可以摆脱$
表中的大量符号;反过来,这确实有助于整理代码。无需放大方括号。
删除垂直规则,加载
booktabs
包,并\hline
根据需要用\midrule
或替换\addlinespace
。请记住,空格可以作为与实线一样有效的分隔符。考虑\bottomrule
在环境底部使用 — — 您猜对了 — —tabularx
。写
R_{\max}
,不是R_{max}
。
\documentclass{article} % or some other suitable document class
\usepackage{booktabs} % for well-spaced horizontal rules
\usepackage{tabularx,ragged2e}
\newcolumntype{L}{>{\RaggedRight}X}
\renewcommand\tabularxcolumn[1]{m{#1}}
\begin{document}
\begin{center}
\begin{tabularx}{\textwidth}{@{} >{$}l<{$} >{$}L<{$} @{}}
\mbox{Cas} & \Delta_{\alpha} \\
\midrule
x_1 < x_2, y_1, y_2 & \alpha - [w_{22'} + \mu(1)(R_{\max} - w_{21'} - w_{22'}) + \nu(1')(w_{21'} - w_{22'}) ]\\
\addlinespace
x_2 < x_1, y_1, y_2 & \alpha - [R_{\max} - w_{11'} + \mu(1)(w_{11'} + w_{12'} - R_{\max}) + \nu(1)(w_{11'} - w_{12'}) ] \\
\addlinespace
y_1 < x_1, x_2, y_2 & \alpha - [w_{22'} + \mu(1)(w_{12'} - w_{22'}) + \nu(1)(R_{\max} - w_{12'} - w_{22'}) ] \\
\addlinespace
y_2 < x_1, x_2, y_1 & \alpha - [R_{\max} - w_{11'} + \mu(1)(w_{11'} - w_{21'}) + \nu(1)(w_{11'} + w_{21'} - R_{\max}) ] \\
\addlinespace
x_1 = y_1 < x_2 = y_2 & \alpha - [w_{22'} + \mu(1)(w_{12'} - w_{22'}) + \nu(1')(w_{21'} - w_{22'}) + \mu(1) \nu(1') (R_{\max} - w_{21'} - w_{12'}) ]\\
\addlinespace
x_1 = y_2 < x_2 = y_1 & \alpha - [w_{22'} + \mu(1)(R_{\max} - w_{21'} - w_{22'}) + \nu(1')(w_{21'} - w_{22'}) + \mu(1) \nu(1') (w_{11'} - w_{22'} - R_{\max}) ] \\
\addlinespace
x_2 = y_1 < x_1 = y_2 & \alpha - [w_{22'} + \mu(1)(w_{12'} - w_{22'}) + \nu(1')(R_{\max} - w_{12'} - w_{22'}) + \mu(1) \nu(1') (w_{11'} - w_{22'} - R_{\max}) ] \\
\addlinespace
x_2 = y_2 < x_1 = y_1 & \alpha - [R_{\max} - w_{11'} + \mu(1)(w_{11'} + w_{12'} - R_{\max}) + \nu(1')(w_{11'} + w_{21'} - R_{\max}) + \mu(1) \nu(1') (R_{\max} - w_{12'} - w_{21'}) ] \\
\addlinespace
x_1 = x_2 = y_1 = y_2 & \alpha - [w_{22'} + \mu(1)(w_{12'} - w_{22'}) + \nu(1')(w_{21'} - w_{22'}) + \mu(1) \nu(1') (w_{11'} + w_{22'} - w_{12'} - w_{21'}) ] \\
\bottomrule
\end{tabularx}
\end{center}
\end{document}
答案2
表格代码要短得多,您将愿意使用该 tabularray
包:
\documentclass{article} % or some other suitable document class
\usepackage{tabularray}
\UseTblrLibrary{booktabs}
\begin{document}
\[
\begin{tblr}{colspec = {@{} c X[l,m] @{}},
rowsep=4pt
}
\mbox{Cas} & \Delta_{\alpha} \\
\hline
x_1 < x_2, y_1, y_2 & \alpha - [w_{22'} + \mu(1)(R_{\max} - w_{21'} - w_{22'}) + \nu(1')(w_{21'} - w_{22'}) ] \\
x_2 < x_1, y_1, y_2 & \alpha - [R_{\max} - w_{11'} + \mu(1)(w_{11'} + w_{12'} - R_{\max}) + \nu(1)(w_{11'} - w_{12'}) ] \\
y_1 < x_1, x_2, y_2 & \alpha - [w_{22'} + \mu(1)(w_{12'} - w_{22'}) + \nu(1)(R_{\max} - w_{12'} - w_{22'}) ] \\
y_2 < x_1, x_2, y_1 & \alpha - [R_{\max} - w_{11'} + \mu(1)(w_{11'} - w_{21'}) + \nu(1)(w_{11'} + w_{21'} - R_{\max}) ] \\
x_1 = y_1 < x_2 = y_2 & \alpha - [w_{22'} + \mu(1)(w_{12'} - w_{22'}) + \nu(1')(w_{21'} - w_{22'}) + \mu(1) \nu(1') (R_{\max} - w_{21'} - w_{12'}) ]\\
x_1 = y_2 < x_2 = y_1 & \alpha - [w_{22'} + \mu(1)(R_{\max} - w_{21'} - w_{22'}) + \nu(1')(w_{21'} - w_{22'}) + \mu(1) \nu(1') (w_{11'} - w_{22'} - R_{\max}) ] \\
x_2 = y_1 < x_1 = y_2 & \alpha - [w_{22'} + \mu(1)(w_{12'} - w_{22'}) + \nu(1')(R_{\max} - w_{12'} - w_{22'}) + \mu(1) \nu(1') (w_{11'} - w_{22'} - R_{\max}) ] \\
x_2 = y_2 < x_1 = y_1 & \alpha - [R_{\max} - w_{11'} + \mu(1)(w_{11'} + w_{12'} - R_{\max}) + \nu(1')(w_{11'} + w_{21'} - R_{\max}) + \mu(1) \nu(1') (R_{\max} - w_{12'} - w_{21'}) ] \\
x_1 = x_2 = y_1 = y_2 & \alpha - [w_{22'} + \mu(1)(w_{12'} - w_{22'}) + \nu(1')(w_{21'} - w_{22'}) + \mu(1) \nu(1') (w_{11'} + w_{22'} - w_{12'} - w_{21'}) ] \\
\hline
\end{tblr}
\]
\end{document}