我有 16,000 多个短视频剪辑,其中有很多与人眼完全相同,但如果您仔细检查,您会发现其中一个或另一个可能有额外的 1 秒(或更短)的持续时间开始或结束。
我已经尝试了几种方法,但查找重复项的成功率为零。您可能会认为比较确切的字节大小就足够了,因为字节是如此之小。但不是!之所以不这样做是因为视频剪辑的开头或结尾可能会有轻微的额外(或非额外)几毫秒。这导致它们不同且不相同,导致任何使用“逐字节比较”的重复查找器结果都不会出现重复结果。
尽管大部分视频剪辑与其他几个视频剪辑完全相同,但我没有使用任何方法来查找任何重复项,因为比较的 .mp4 文件的开头或结尾处存在几毫秒的差异。
有谁知道我如何成功找到这些短视频剪辑 .mp4 文件的重复项?平均而言,每个时间大约为 30 秒,但与其他时间相比,只有几毫秒的差异。对于人眼来说,这将是完全相同的,因此我看到了重复的内容,但我不想自己观看和比较 16,000 多个视频剪辑。
有什么建议么?
我找到了一个很好的答案来回答我的问题,你能允许我回答吗?
……好像搁置后我不能……
答案1
我也遇到了同样的问题,所以我写了一个程序。
问题是我有各种格式和分辨率的视频,因此我需要对每个视频帧进行哈希并进行比较。
您只需更改顶部的目录即可。
from os import path, walk, makedirs, rename
from time import clock
from imagehash import average_hash
from PIL import Image
from cv2 import VideoCapture, CAP_PROP_FRAME_COUNT, CAP_PROP_FRAME_WIDTH, CAP_PROP_FRAME_HEIGHT, CAP_PROP_FPS
from json import dump, load
from multiprocessing import Pool, cpu_count
input_vid_dir = r'C:\Users\gokul\Documents\data\\'
json_dir = r'C:\Users\gokul\Documents\db\\'
analyzed_dir = r'C:\Users\gokul\Documents\analyzed\\'
duplicate_dir = r'C:\Users\gokul\Documents\duplicate\\'
if not path.exists(json_dir):
makedirs(json_dir)
if not path.exists(analyzed_dir):
makedirs(analyzed_dir)
if not path.exists(duplicate_dir):
makedirs(duplicate_dir)
def write_to_json(filename, data):
file_full_path = json_dir + filename + ".json"
with open(file_full_path, 'w') as file_pointer:
dump(data, file_pointer)
return
def video_to_json(filename):
file_full_path = input_vid_dir + filename
start = clock()
size = round(path.getsize(file_full_path) / 1024 / 1024, 2)
video_pointer = VideoCapture(file_full_path)
frame_count = int(VideoCapture.get(video_pointer, int(CAP_PROP_FRAME_COUNT)))
width = int(VideoCapture.get(video_pointer, int(CAP_PROP_FRAME_WIDTH)))
height = int(VideoCapture.get(video_pointer, int(CAP_PROP_FRAME_HEIGHT)))
fps = int(VideoCapture.get(video_pointer, int(CAP_PROP_FPS)))
success, image = video_pointer.read()
video_hash = {}
while success:
frame_hash = average_hash(Image.fromarray(image))
video_hash[str(frame_hash)] = filename
success, image = video_pointer.read()
stop = clock()
time_taken = stop - start
print("Time taken for ", file_full_path, " is : ", time_taken)
data_dict = dict()
data_dict['size'] = size
data_dict['time_taken'] = time_taken
data_dict['fps'] = fps
data_dict['height'] = height
data_dict['width'] = width
data_dict['frame_count'] = frame_count
data_dict['filename'] = filename
data_dict['video_hash'] = video_hash
write_to_json(filename, data_dict)
return
def multiprocess_video_to_json():
files = next(walk(input_vid_dir))[2]
processes = cpu_count()
print(processes)
pool = Pool(processes)
start = clock()
pool.starmap_async(video_to_json, zip(files))
pool.close()
pool.join()
stop = clock()
print("Time Taken : ", stop - start)
def key_with_max_val(d):
max_value = 0
required_key = ""
for k in d:
if d[k] > max_value:
max_value = d[k]
required_key = k
return required_key
def duplicate_analyzer():
files = next(walk(json_dir))[2]
data_dict = {}
for file in files:
filename = json_dir + file
with open(filename) as f:
data = load(f)
video_hash = data['video_hash']
count = 0
duplicate_file_dict = dict()
for key in video_hash:
count += 1
if key in data_dict:
if data_dict[key] in duplicate_file_dict:
duplicate_file_dict[data_dict[key]] = duplicate_file_dict[data_dict[key]] + 1
else:
duplicate_file_dict[data_dict[key]] = 1
else:
data_dict[key] = video_hash[key]
if duplicate_file_dict:
duplicate_file = key_with_max_val(duplicate_file_dict)
duplicate_percentage = ((duplicate_file_dict[duplicate_file] / count) * 100)
if duplicate_percentage > 50:
file = file[:-5]
print(file, " is dup of ", duplicate_file)
src = analyzed_dir + file
tgt = duplicate_dir + file
if path.exists(src):
rename(src, tgt)
# else:
# print("File already moved")
def mv_analyzed_file():
files = next(walk(json_dir))[2]
for filename in files:
filename = filename[:-5]
src = input_vid_dir + filename
tgt = analyzed_dir + filename
if path.exists(src):
rename(src, tgt)
# else:
# print("File already moved")
if __name__ == '__main__':
mv_analyzed_file()
multiprocess_video_to_json()
mv_analyzed_file()
duplicate_analyzer()