分裂方程问题

分裂方程问题

我想将下面的等式分成两部分。这似乎是非常基本的事情。

\begin{equation}
\zeta_k(x) = \frac{\sin (\frac{1}{2} (x - x_0)) \cdots \sin(\frac{1}{2} (x-x_{k-1}))}
{ \sin ( \frac{1}{2} (x_k - x_0)) \cdots \sin(\frac{1}{2} (x_k - x_{k-1}))} %
%
\frac{\sin ( \frac{1}{2} (x - x_{k+1})) \cdots %
\sin(\frac{1}{2} (x - x_{2n}))}{\sin(\frac{1}{2} (x_k - x_{k+1})) \cdots %
\sin(\frac{1}{2} (x_k - x_{2n}))}
\label{eq3}
\end{equation}

我插入了 amsmath 包并尝试使用 begin split 等,但无法将方程分成两行,其中一行包含

\zeta_k(x) = \frac{\sin (\frac{1}{2} (x - x_0)) \cdots \sin(\frac{1}{2} (x-x_{k-1}))}
{ \sin ( \frac{1}{2} (x_k - x_0)) \cdots \sin(\frac{1}{2} (x_k - x_{k-1}))} %
%

另一个包含

\frac{\sin ( \frac{1}{2} (x - x_{k+1})) \cdots %
\sin(\frac{1}{2} (x - x_{2n}))}{\sin(\frac{1}{2} (x_k - x_{k+1})) \cdots %
\sin(\frac{1}{2} (x_k - x_{2n}))}

有什么建议么?

答案1

我会用(回忆录不相关)

\documentclass[a4paper]{memoir}
\usepackage{amsmath}
\begin{document}
\begin{equation}
\begin{split}
\zeta_k(x) ={} & \frac{\sin (\frac{1}{2} (x - x_0)) \cdots
  \sin(\frac{1}{2} (x-x_{k-1}))} { \sin ( \frac{1}{2} (x_k - x_0))
  \cdots \sin(\frac{1}{2} (x_k - x_{k-1}))} %
 %
\\
& \times \frac{\sin ( \frac{1}{2} (x - x_{k+1})) \cdots %
  \sin(\frac{1}{2} (x - x_{2n}))}{\sin(\frac{1}{2} (x_k -
  x_{k+1})) \cdots %
  \sin(\frac{1}{2} (x_k - x_{2n}))}
\end{split}
\label{eq3}
\end{equation}
\end{document}

相关内容