我正在尝试填充由 4 条双曲线的 6 个交点定义的复杂区域。如您所见:
具体来说,我想填充由 6 个点界定的区域。我知道 的精确坐标p_i
和每条双曲线的精确方程。我该如何将它们连接起来并填充该区域?
为了完整起见,下面是我目前的代码:
\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{calc}
\begin{document}
\def\bndmax{5}
\def\bndmin{0.2}
\def\xS{1.5}
\def\gR{1.618034} % The golden ratio
\begin{tikzpicture}
\draw (-3,-3) grid (3,3);
\tikzset{func/.style={thick,color=orange!90}}
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{-1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{-1/\x});
\begin{scope}[shift={(\xS,1/\xS)}]
\tikzset{func/.style={thick,color=orange!60,dashed}}
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{-1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{-1/\x});
\end{scope}
\fill (\xS,1/\xS) circle (2pt);
\pgfmathsetmacro\x{-\gR*\xS}
\pgfmathsetmacro\y{1/(\gR*\xS)}
\coordinate (p1) at (\x,\y);
\pgfmathsetmacro\x{-(1/\gR)*\xS}
\pgfmathsetmacro\y{\gR*(1/\xS)}
\coordinate (p2) at (\x,\y);
\pgfmathsetmacro\x{1/(\gR*\gR)*\xS}
\pgfmathsetmacro\y{\gR*\gR/\xS)}
\coordinate (p3) at (\x,\y);
\pgfmathsetmacro\x{(1/\gR)*\xS}
\pgfmathsetmacro\y{-\gR*(1/\xS)}
\coordinate (p4) at (\x,\y);
\pgfmathsetmacro\x{\gR*\xS}
\pgfmathsetmacro\y{-1/(\gR*\xS)}
\coordinate (p5) at (\x,\y);
\pgfmathsetmacro\x{\gR*\gR*\xS}
\pgfmathsetmacro\y{1/(\gR*\gR*\xS)}
\coordinate (p6) at (\x,\y);
\foreach \i in {1,2,3,4,5,6}
\fill[red] (p\i) circle (2pt) node[right]{$p_{\i}$};
\end{tikzpicture}
\end{document}
答案1
\xs
这是一个非全自动解决方案。如果我在 中的函数定义中使用,它不起作用,plot
所以我不得不手动(因此是静态的)将其放入。对于相应的域,我将您重复使用的帮助宏\x
和重命名\y
为 和\xa
至\ya
和\xa
,\xf
因此它们可以在以后使用。然后它只是连接了很多plot
和--
命令。--
很重要,否则每个单独的图都是封闭的,导致奇怪的菱形。
\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{calc}
\begin{document}
\def\bndmax{5}
\def\bndmin{0.2}
\def\xS{1.5}
\def\gR{1.618034} % The golden ratio
\begin{tikzpicture}
\draw (-3,-3) grid (3,3);
\tikzset{func/.style={thick,color=orange!90}}
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{-1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{-1/\x});
\begin{scope}[shift={(\xS,1/\xS)}]
\tikzset{func/.style={thick,color=orange!60,dashed}}
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{-1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{-1/\x});
\end{scope}
\fill (\xS,1/\xS) circle (2pt);
\pgfmathsetmacro\xa{-\gR*\xS}
\pgfmathsetmacro\ya{1/(\gR*\xS)}
\coordinate (p1) at (\xa,\ya);
\pgfmathsetmacro\xb{-(1/\gR)*\xS}
\pgfmathsetmacro\yb{\gR*(1/\xS)}
\coordinate (p2) at (\xb,\yb);
\pgfmathsetmacro\xc{1/(\gR*\gR)*\xS}
\pgfmathsetmacro\yc{\gR*\gR/\xS)}
\coordinate (p3) at (\xc,\yc);
\pgfmathsetmacro\xd{(1/\gR)*\xS}
\pgfmathsetmacro\yd{-\gR*(1/\xS)}
\coordinate (p4) at (\xd,\yd);
\pgfmathsetmacro\xe{\gR*\xS}
\pgfmathsetmacro\ye{-1/(\gR*\xS)}
\coordinate (p5) at (\xe,\ye);
\pgfmathsetmacro\xf{\gR*\gR*\xS}
\pgfmathsetmacro\yf{1/(\gR*\gR*\xS)}
\coordinate (p6) at (\xf,\yf);
\foreach \i in {1,2,3,4,5,6}
\fill[red] (p\i) circle (2pt) node[right]{$p_{\i}$};
\clip (p1) plot[domain=\xa:\xb] (\x,{-1/\x}) -- plot[domain=\xb:\xc] (\x,{-1/(\x-1.5)+1/1.5}) -- plot[domain=\xc:\xf] (\x,{1/\x}) -- plot[domain=\xf:\xe] (\x,{-1/(\x-1.5)+1/1.5}) -- plot[domain=\xe:\xd] (\x,{-1/\x}) -- plot[domain=\xd:\xa] (\x,{1/(\x-1.5)+1/1.5}) --cycle;
\fill[opacity=0.3,blue!30!cyan] (\xa,\yd) rectangle (\xf,\yc);
\end{tikzpicture}
\end{document}
编辑1:仅进行了一些小改进:
- 将网格扩大到 10x10
- 改善整体剪辑
- 固定边界,使得所有函数都绘制在整个域上
- 将蓝色填充放在背景层上,这样它就不会与功能或点部分重叠
。
\documentclass[tikz]{standalone}
\usetikzlibrary{calc}
\pgfdeclarelayer{background layer}
\pgfsetlayers{background layer,main}
\begin{document}
\def\bndmax{6.5}
\def\bndmin{0.15}
\def\xS{1.5}
\def\gR{1.618034} % The golden ratio
\begin{tikzpicture}
\clip (-5cm-0.2pt,-5cm-0.2pt) rectangle (5cm+0.pt,5cm+0.2pt);
\draw (-5,-5) grid (5,5);
\draw[thick] (-5,0) -- (5,0);
\draw[thick] (0,-5) -- (0,5);
\tikzset{func/.style={thick,color=orange!90}}
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{-1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{-1/\x});
\begin{scope}[shift={(\xS,1/\xS)}]
\tikzset{func/.style={thick,color=orange!60,dashed}}
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{-1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{-1/\x});
\end{scope}
\fill (\xS,1/\xS) circle (2pt);
\pgfmathsetmacro\xa{-\gR*\xS}
\pgfmathsetmacro\ya{1/(\gR*\xS)}
\coordinate (p1) at (\xa,\ya);
\pgfmathsetmacro\xb{-(1/\gR)*\xS}
\pgfmathsetmacro\yb{\gR*(1/\xS)}
\coordinate (p2) at (\xb,\yb);
\pgfmathsetmacro\xc{1/(\gR*\gR)*\xS}
\pgfmathsetmacro\yc{\gR*\gR/\xS)}
\coordinate (p3) at (\xc,\yc);
\pgfmathsetmacro\xd{(1/\gR)*\xS}
\pgfmathsetmacro\yd{-\gR*(1/\xS)}
\coordinate (p4) at (\xd,\yd);
\pgfmathsetmacro\xe{\gR*\xS}
\pgfmathsetmacro\ye{-1/(\gR*\xS)}
\coordinate (p5) at (\xe,\ye);
\pgfmathsetmacro\xf{\gR*\gR*\xS}
\pgfmathsetmacro\yf{1/(\gR*\gR*\xS)}
\coordinate (p6) at (\xf,\yf);
\foreach \i in {1,2,3,4,5,6}
\fill[red] (p\i) circle (2pt) node[right]{$p_{\i}$};
\begin{pgfonlayer}{background layer}
\clip (p1) plot[domain=\xa:\xb] (\x,{-1/\x}) -- plot[domain=\xb:\xc] (\x,{-1/(\x-1.5)+1/1.5}) -- plot[domain=\xc:\xf] (\x,{1/\x}) -- plot[domain=\xf:\xe] (\x,{-1/(\x-1.5)+1/1.5}) -- plot[domain=\xe:\xd] (\x,{-1/\x}) -- plot[domain=\xd:\xa] (\x,{1/(\x-1.5)+1/1.5}) --cycle;
\fill[opacity=0.3,blue!30!cyan] (\xa,\yd) rectangle (\xf,\yc);
\end{pgfonlayer}
\end{tikzpicture}
\end{document}
答案2
当您拥有复杂区域每个顶点的坐标时,您可以用一条路径绘制它:
\documentclass{standalone}
\usepackage{tikz}
\def\xS{1.5}
\def\gR{1.618034} % The golden ratio
\begin{document}
\begin{tikzpicture}
\draw[samples=30,line join=round,fill=lime]
plot [domain=-\gR*\xS:-(1/\gR)*\xS] (\x,-{1/\x})
-- plot [domain=-\gR*\xS:-(1/\gR)*\xS] (\x+\xS,{-(1/\x)+(1/\xS)})
-- plot [domain=1/(\gR*\gR)*\xS:\gR*\gR*\xS] (\x,{1/\x})
-- plot [domain=\gR*\xS:{(1/\gR)*\xS}] (\x+\xS,{-1/\x+1/\xS})
-- plot [domain=\gR*\xS:{(1/\gR)*\xS}] (\x,{-1/\x})
-- plot [domain=-1/(\gR*\gR)*\xS:-\gR*\gR*\xS] (\x+\xS,{1/\x+1/\xS})
-- cycle;
\end{tikzpicture}
\end{document}
您甚至可以改变参数“\xS”:
\begin{tikzpicture}
\foreach \gray in {10,20,...,90}{
\pgfmathsetmacro{\xS}{.5+\gray/100*1.5}
\draw[samples=30,line join=round,draw=black!\gray!yellow]
plot [domain=-\gR*\xS:-(1/\gR)*\xS] (\x,-{1/\x})
-- plot [domain=-\gR*\xS:-(1/\gR)*\xS] (\x+\xS,{-(1/\x)+(1/\xS)})
-- plot [domain=1/(\gR*\gR)*\xS:\gR*\gR*\xS] (\x,{1/\x})
-- plot [domain=\gR*\xS:{(1/\gR)*\xS}] (\x+\xS,{-1/\x+1/\xS})
-- plot [domain=\gR*\xS:{(1/\gR)*\xS}] (\x,{-1/\x})
-- plot [domain=-1/(\gR*\gR)*\xS:-\gR*\gR*\xS] (\x+\xS,{1/\x+1/\xS})
-- cycle;
}
\end{tikzpicture}
但是如果你不知道坐标,那么总有一个使用两个带有链式图的剪辑路径的解决方案(如果\bndmax
和\bndmin
选择正确则有效):
\documentclass{standalone}
\usepackage{tikz}
\def\bndmax{5}
\def\bndmin{0.2}
\def\xS{1.5}
\def\gR{1.618034} % The golden ratio
\begin{document}
\begin{tikzpicture}
\draw (-\bndmax,-1/\bndmin) grid (\bndmax,1/\bndmin);
\path[clip] plot [samples=200,domain=-\bndmax:-\bndmin] (-\x,{1/\x})
-- plot [samples=200,domain=-\bndmin:-\bndmax] (\x,{1/\x})
-- plot [samples=200,domain=-\bndmax:-\bndmin] (\x,{-1/\x})
-- plot [samples=200,domain=-\bndmin:-\bndmax] (-\x,{-1/\x})
-- cycle;
\fill[green,fill opacity=.3]
(-\bndmax,-1/\bndmin) rectangle (\bndmax,1/\bndmin);
\begin{scope}[shift={(\xS,1/\xS)}]
\path[clip] plot [samples=200,domain=-\bndmax:-\bndmin] (-\x,{1/\x})
-- plot [samples=200,domain=-\bndmin:-\bndmax] (\x,{1/\x})
-- plot [samples=200,domain=-\bndmax:-\bndmin] (\x,{-1/\x})
-- plot [samples=200,domain=-\bndmin:-\bndmax] (-\x,{-1/\x})
-- cycle;
\fill[red,fill opacity=.7]
(-\bndmax,-1/\bndmin) rectangle (\bndmax,1/\bndmin);
\end{scope}
\end{tikzpicture}
\end{document}
答案3
您可以为此使用 PGFPlots。
我定义了两个函数,
declare function={f(\x)=min(1/\x,-1/\x);},
declare function={g(\x)=max(1/\x,-1/\x);}
对应于双曲线的负(正)部分,然后用它们定义两个新函数
declare function={h(\x)=max(f(x),f(x-1.5)+1/1.5);},
declare function={i(\x)=min(g(x),g(x-1.5)+1/1.5);}
其对应于正(负)未移位部分和移位部分中较大者(较小者)。
然后可以在堆叠图中使用这些来为该区域着色。为了确保只有p1
和之间的部分p6
被着色,我们可以利用未定义的坐标会被自动丢弃的事实,所以我添加了术语
*1/(h(x)<i(x))
这会导致除以零超出我们感兴趣的区域,因此绘图在我们想要的地方开始和停止。
\documentclass{article}
\usepackage{pgfplots}
\begin{document}
\begin{tikzpicture}[
declare function={f(\x)=min(1/\x,-1/\x);},
declare function={g(\x)=max(1/\x,-1/\x);},
declare function={h(\x)=max(f(x),f(x-1.5)+1/1.5);},
declare function={i(\x)=min(g(x),g(x-1.5)+1/1.5);}
]
\begin{axis}[
domain=-5:5,
ymin=-5,ymax=5,
samples=101,
no markers,
smooth
]
\addplot [draw=none, stack plots=y] {h(x)*1/(h(x)<i(x))};
\addplot [draw=none, fill=yellow, thick, stack plots=y] {i(x)*1/(h(x)<i(x))- h(x)*1/(h(x)<i(x))}\closedcycle;
\addplot [black] {f(x)};
\addplot [black] {g(x)};
\addplot [black, dashed] {f(x-1.5)+1/1.5};
\addplot [black, dashed] {g(x-1.5)+1/1.5};
\end{axis}
\end{tikzpicture}
\end{document}
答案4
对于那些正在寻找 PSTricks 等效产品的人来说。
\documentclass[pstricks,border=0pt]{standalone}
\usepackage{pst-eucl,pst-plot}
\def\f(#1){1 #1 div}
\def\F(#1){\f(#1 1.5 sub) 1 1.5 div add}
\def\g(#1){\f(#1 neg)}
\def\G(#1){\g(#1 1.5 sub) 1 1.5 div add}
\def\x(#1){\psGetNodeCenter{#1}#1.x}
\psset{yMaxValue=4,yMinValue=-4,plotpoints=6001}
\begin{document}
\begin{pspicture}[showgrid=false](-4.25,-4.25)(5.5,4.5)
\psclip{\psframe[linestyle=none,linewidth=0pt](-4,-4)(5,4)}
\pstInterFF[PosAngle=135]{\g(x)}{\F(x)}{-2}{P_1}
\pstInterFF[PosAngle=135]{\g(x)}{\G(x)}{-1}{P_2}
\pstInterFF[PosAngle=180]{\G(x)}{\f(x)}{1}{P_3}
\pstInterFF[PosAngle=90]{\G(x)}{\f(x)}{3}{P_4}
\pstInterFF[PosAngle=-45]{\G(x)}{\g(x)}{2}{P_5}
\pstInterFF[PosAngle=0]{\g(x)}{\F(x)}{1}{P_6}
\pscustom*[linecolor=yellow]
{
\psplot{\x(P_1)}{\x(P_2)}{\g(x)}
\psplot{\x(P_2)}{\x(P_3)}{\G(x)}
\psplot{\x(P_3)}{\x(P_4)}{\f(x)}
\psplot{\x(P_4)}{\x(P_5)}{\G(x)}
\psplot{\x(P_5)}{\x(P_6)}{\g(x)}
\psplot{\x(P_6)}{\x(P_1)}{\F(x)}
}
\psplot[linecolor=red]{-4}{5}{\f(x)}
\psplot[linecolor=blue]{-4}{5}{\g(x)}
\psset{linestyle=dashed,dash=3pt 1pt}
\psplot[linecolor=red]{-4}{5}{\F(x)}
\psplot[linecolor=blue]{-4}{5}{\G(x)}
\endpsclip
\psaxes[labelFontSize=\scriptscriptstyle,linecolor=gray]{->}(0,0)(-4,-4)(5,4)[$x$,0][$y$,90]
\end{pspicture}
\end{document}
笔记
\psset{saveNodeCoors}
\def\x(#1){N-#1.x}
可以用来代替
\def\x(#1){\psGetNodeCenter{#1}#1.x}
最新更新
为了方便起见,使用中缀表示法。
\documentclass[pstricks,border=12pt]{standalone}
\usepackage{pst-eucl,pst-plot}
\def\f(#1){(1/(#1))}
\def\F(#1){(\f(#1-1.5)+1/1.5)}
\def\g(#1){(\f(-(#1)))}
\def\G(#1){(\g(#1-1.5)+1/1.5)}
\def\x(#1){N-#1.x}
\pstVerb{/I2P {exec AlgParser cvx exec} def}
\begin{document}
\begin{pspicture}[showgrid=false,saveNodeCoors,algebraic,yMaxValue=4,yMinValue=-4,plotpoints=6001](-4.25,-4.25)(5.5,4.5)
\psclip{\psframe[linestyle=none,linewidth=0pt](-4,-4)(5,4)}
\pstInterFF[PosAngle=135]{{\g(x)} I2P}{{\F(x)} I2P}{-2}{P_1}
\pstInterFF[PosAngle=135]{{\g(x)} I2P}{{\G(x)} I2P}{-1}{P_2}
\pstInterFF[PosAngle=180]{{\G(x)} I2P}{{\f(x)} I2P}{1}{P_3}
\pstInterFF[PosAngle=90]{{\G(x)} I2P}{{\f(x)} I2P}{3}{P_4}
\pstInterFF[PosAngle=-45]{{\G(x)} I2P}{{\g(x)} I2P}{2}{P_5}
\pstInterFF[PosAngle=0]{{\g(x)} I2P}{{\F(x)} I2P}{1}{P_6}
\pscustom*[linecolor=yellow]
{
\psplot{\x(P_1)}{\x(P_2)}{\g(x)}
\psplot{\x(P_2)}{\x(P_3)}{\G(x)}
\psplot{\x(P_3)}{\x(P_4)}{\f(x)}
\psplot{\x(P_4)}{\x(P_5)}{\G(x)}
\psplot{\x(P_5)}{\x(P_6)}{\g(x)}
\psplot{\x(P_6)}{\x(P_1)}{\F(x)}
}
\psplot[linecolor=red]{-4}{5}{\f(x)}
\psplot[linecolor=blue]{-4}{5}{\g(x)}
\psset{linestyle=dashed,dash=3pt 1pt}
\psplot[linecolor=red]{-4}{5}{\F(x)}
\psplot[linecolor=blue]{-4}{5}{\G(x)}
\endpsclip
\psaxes[labelFontSize=\scriptscriptstyle,linecolor=gray]{->}(0,0)(-4,-4)(5,4)[$x$,0][$y$,90]
\foreach \i in {1,...,6}{\qdisk(P_\i){2pt}}
\end{pspicture}
\end{document}