让我们考虑以下例子
\documentclass{article}
\usepackage{enumerate}
\begin{document}
\begin{enumerate}
\item Which of the following numbers is the largest ?\\
$2^{3^4},2^{4^3},3^{2^4},3^{4^2},4^{2^3},4^{3^2}.$
\begin{enumerate}[(a)]
\item $2^{3^4}$
\item $3^{4^2}$
\item $4^{3^2}$
\item $4^{2^3}$
\end{enumerate}
\end{enumerate}
\end{document}
得出的结果为:
但我想使用同一个包来生成以下内容:
或者
或者
我怎样才能做到这一点?
答案1
您可以使用multicol
包裹:
\documentclass{article}
\usepackage{enumerate}
\usepackage{multicol}
\begin{document}
\begin{enumerate}
\item Which of the following numbers is the largest?\\
$2^{3^4}$, $2^{4^3}$, $3^{2^4}$, $3^{4^2}$, $4^{2^3}$, $4^{3^2}$.
\begin{enumerate}[(a)]
\begin{multicols}{2}
\item $2^{3^4}$
\item $3^{4^2}$
\item $4^{3^2}$
\item $4^{2^3}$
\end{multicols}
\end{enumerate}
\end{enumerate}
\end{document}
这是另一个选择,利用这次enumitem
包及其inline
选项:
\documentclass{article}
\usepackage[inline]{enumitem}
\begin{document}
\begin{enumerate}
\item Which of the following numbers is the largest?\\
$2^{3^4}$, $2^{4^3}$, $3^{2^4}$, $3^{4^2}$, $4^{2^3}$, $4^{3^2}$.
\begin{enumerate*}[label=(\alph*),itemjoin={\hspace{\fill}}]
\item $2^{3^4}$
\item $3^{4^2}$
\item $4^{3^2}$
\item $4^{2^3}$
\end{enumerate*}
\end{enumerate}
\end{document}
答案2
这看起来是tasks
(此处结合exsheets
自 2017 年 5 月起,该标准已被xsim
):
\documentclass{article}
\usepackage{exsheets}
% this sets up the question headings to be a simple run-in number:
\SetupExSheets{
headings = runin-nr ,
headings-format = \normalfont
}
\usepackage{tasks}
% this creates a new environment `choices' where the single
% choices are indicated with \choice and are labelled (a), (b), ...:
\NewTasks[counter-format=(tsk[a]),label-width=2em]{choices}[\choice]
\begin{document}
\begin{question}
Which of the following numbers is the largest?\\
$2^{3^4}$, $2^{4^3}$, $3^{2^4}$, $3^{4^2}$, $4^{2^3}$, $4^{3^2}$.
\begin{choices}
\choice $2^{3^4}$
\choice $3^{4^2}$
\choice $4^{3^2}$
\choice $4^{2^3}$
\end{choices}
\end{question}
\begin{question}
Which of the following numbers is the largest?\\
$2^{3^4}$, $2^{4^3}$, $3^{2^4}$, $3^{4^2}$, $4^{2^3}$, $4^{3^2}$.
% the optional argument in parentheses determines the number of columns:
\begin{choices}(2)
\choice $2^{3^4}$
\choice $3^{4^2}$
\choice $4^{3^2}$
\choice $4^{2^3}$
\end{choices}
\end{question}
\begin{question}
Which of the following numbers is the largest?\\
$2^{3^4}$, $2^{4^3}$, $3^{2^4}$, $3^{4^2}$, $4^{2^3}$, $4^{3^2}$.
\begin{choices}(4)
\choice $2^{3^4}$
\choice $3^{4^2}$
\choice $4^{3^2}$
\choice $4^{2^3}$
\end{choices}
\end{question}
\end{document}