LyX:垂直间距仅限段落中的某些行/仅限内联公式

LyX:垂直间距仅限段落中的某些行/仅限内联公式

我在 LyX 中遇到了以下问题:我得到了许多段落,其中包含非常长的内联公式,通过多行化,这些公式在垂直方向上相邻。美学效果非常糟糕,所以我想在包含公式的行之间留出一些空间……我该怎么做才能不改变整个段落的垂直间距?

编辑:抱歉,这里有一些例子(认为在 Lyx 中看起来比在 pdflatex 中更糟糕)

\documentclass[english]{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{babel}
\begin{document}
Choosing the words here because I want to write a long line so that I can verify my hypotesis about how to introduce a proper spacing between only some lines of a given paragraph $k_{x}\rightarrow k_{x}+\frac{z}{l^{2}}$ And then I have: $ H_{2x2}=\frac{E_{g}}{2}+Q-\frac{\hbar^{2}}{2}\frac{\partial}{\partial z}\frac{1}{m_{3}}\frac{\partial}{\partial z}+\frac{\hbar^{2}}{2}\frac{1}{m_{1}}(k_{x}+\frac{z}{l^{2}})^{2}+\frac{\hbar^{2}}{2}\frac{1}{m_{2}}k_{y}^{2}+H_{R}+P_{\parallel}P_{\perp}(\frac{\partial}{\partial z}\gamma)(\cos^{2}\theta+r\sin^{2}\theta)\frac{z}{l^{2}}\sigma_{y}-P_{\parallel}P_{\perp}(\frac{\partial}{\partial z}\gamma)\sin\theta\cos\theta(1-r)\frac{z}{l^{2}}\sigma_{z} +\cos\theta\frac{1}{2}\mu_{o}\overline{g_{t}}B_{y}\sigma_{y}-\sin\theta\frac{1}{2}\mu_{0}\overline{g_{t}}B_{y}\sigma_{z}+$$\cos^{2}\theta P_{\parallel}P_{\perp}\overline{\gamma}\frac{1}{l^{2}}\sigma_{y}-\sin\theta\cos\theta P_{\parallel}P_{\perp}\overline{\gamma}\frac{1}{l^{2}}\sigma_{z}+\sin\theta\cos\theta P_{\perp}^{2}\overline{\gamma}\frac{1}{l^{2}}\sigma_{z}+\sin^{2}\theta P_{\perp}^{2}\overline{\gamma}\frac{1}{l^{2}}\sigma_{y}$ some other text that goes on further and I can continue and so on...
\end{document}

答案1

$..math..$\vspace{2pt} text...

将在数学结束的行后留出 2pt 的空间。如果它们真的那么长,最好使用

text...text
\begin{center}
$ long wrapping math$
\end{center}
more text

您添加了一个示例。我认为即使添加了空格,这也完全无法阅读。您可能需要进行显示计算,也许:

在此处输入图片描述

\documentclass[english]{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{babel}
\begin{document}
Choosing the words here because I want to write a long line so that I can verify my hypotesis about how to introduce a proper spacing between only some lines of a given paragraph $k_{x}\rightarrow k_{x}+\frac{z}{l^{2}}$ And then I have:
\begin{multline}
 H_{2x2}={}\\
\frac{E_{g}}{2}+Q-{}\\
\frac{\hbar^{2}}{2}\frac{\partial}{\partial z}\frac{1}{m_{3}}\frac{\partial}{\partial z}+{}\\
\frac{\hbar^{2}}{2}\frac{1}{m_{1}}(k_{x}+\frac{z}{l^{2}})^{2}+{}\\
\frac{\hbar^{2}}{2}\frac{1}{m_{2}}k_{y}^{2}+H_{R}+{}\\
P_{\parallel}P_{\perp}(\frac{\partial}{\partial z}\gamma)(\cos^{2}\theta+r\sin^{2}\theta)\frac{z}{l^{2}}\sigma_{y}-{}\\
P_{\parallel}P_{\perp}(\frac{\partial}{\partial z}\gamma)\sin\theta\cos\theta(1-r)\frac{z}{l^{2}}\sigma_{z} +{}\\
\cos\theta\frac{1}{2}\mu_{o}\overline{g_{t}}B_{y}\sigma_{y}-{}\\
\sin\theta\frac{1}{2}\mu_{0}\overline{g_{t}}B_{y}\sigma_{z}+{}\\
\cos^{2}\theta P_{\parallel}P_{\perp}\overline{\gamma}\frac{1}{l^{2}}\sigma_{y}-{}\\
\sin\theta\cos\theta P_{\parallel}P_{\perp}\overline{\gamma}\frac{1}{l^{2}}\sigma_{z}+{}\\
\sin\theta\cos\theta P_{\perp}^{2}\overline{\gamma}\frac{1}{l^{2}}\sigma_{z}+{}\\
\sin^{2}\theta P_{\perp}^{2}\overline{\gamma}\frac{1}{l^{2}}\sigma_{y}
\end{multline}
 some other text that goes on further and I can continue and so on...
\end{document}

相关内容