\documentclass[11pt]{article}
\begin{document}
\begin{center}
\underline{TCS-505}\\
\underline{DAA TUT-1}
\end{center}
\begin{flushright}
\textbf{Name:Megha Saraswat}\\
\textbf{Sec: Purple}\\
\textbf{Roll No: 65}
\end{flushright}
\underline{I.Logarithm Properties:-}
\[1.\log_{a}x^{k}=k\log_{a}x\]
\[2.\log_{a}(mn)=\log_{a}m+\log_{a}n\]
\[3.\log_{a}(m/n)=\log_{a}m-\log_{a}n\]
\[4.\log_{a}x=\frac{1}{\log_{x}a}=\frac{\log_{b}x}{\log_{b}a}\]
\[5.x^{\log_{a}y}=y^{\log_{a}x}\]
\underline{II.Exponential Properties:-}
\[1.\left( a^{m}\right) ^{n}=a^{mn}\]
\[2.a^{m}a^{n}=a^{m+n}\]
\[3.\frac{a^{m}}{a^{n}}=a^{m-n}\]
\[4.\lim_{n\rightarrow\infty} \frac{n^{b}}{a^{n}}=0\]
\underline{III.Series:-}
\[1.\;1+2+3---------+n=\frac{n\left( n+1\right) }{2}\]
\[2.\;1^{2}+2^{2}+3^{2}+---------+n^{2}=\frac{n\left( n+1\right) \left( 2n+1\right) }{6}\]
\[3.\;1^{3}+2^{3}+3^{3}+---------+n^{3}=\frac{n^{2}\left( n+1\right)^{2}}{4}\]
\[4.\;1+x+x^{2}+x^{3}+---------+x^{k-1}=\frac{x^{k}-1}{x-1}\]
\end{document}
答案1
就左对齐和注意手动枚举而言,您可能会遵循如下内容:
\documentclass[11pt]{article}
\usepackage{enumitem}% http://ctan.org/pkg/enumitem
\setlist[enumerate]{labelindent=0pt,leftmargin=*}
\setlength{\parindent}{0pt}% No paragraph indent
\begin{document}
\begin{center}
\underline{TCS-505} \\
\underline{DAA TUT-1}
\end{center}
\begin{flushright}\bfseries
Name: Megha Saraswat \\
Sec: Purple \\
Roll No: 65
\end{flushright}
\underline{\strut I.~Logarithm Properties:}
\begin{enumerate}
\item $\log_{a}x^{k} = k\log_{a}x$
\item $\log_{a}(mn) = \log_{a}m + \log_{a}n$
\item $\log_{a}(m/n) = \log_{a}m - \log_{a}n$
\item $\log_{a}x = \frac{1}{\log_{x}a} = \frac{\log_{b}x}{\log_{b}a}$
\item $x^{\log_{a}y} = y^{\log_{a}x}$
\end{enumerate}
\underline{\strut II.~Exponential Properties:}
\begin{enumerate}
\item $\left( a^{m}\right)^{n} = a^{mn}$
\item $a^{m}a^{n} = a^{m+n}$
\item $\frac{a^{m}}{a^{n}} = a^{m-n}$
\item $\lim_{n\rightarrow\infty} \frac{n^{b}}{a^{n}} = 0$
\end{enumerate}
\underline{\strut III.~Series:}
\begin{enumerate}
\item $1+2+3+\cdots+n = \frac{n\left( n+1\right) }{2}$
\item $1^{2}+2^{2}+3^{2}+\cdots+n^{2} = \frac{n\left( n+1\right) \left( 2n+1\right) }{6}$
\item $1^{3}+2^{3}+3^{3}+\cdots+n^{3} = \frac{n^{2}\left( n+1\right)^{2}}{4}$
\item $1+x+x^{2}+x^{3}+\cdots+x^{k-1} = \frac{x^{k}-1}{x-1}$
\end{enumerate}
\end{document}
每个“部分”都引入了A \strut
,以获得一致的基线规则。此外,还可以自动使用部分及其格式,但我不确定您的范围有多大。
枚举的左对齐是通过enumitem
labelindent=0pt
和选项leftmargin=*
(全局设置),以及0pt
段落缩进(\parindent
,也是全局设置)。
答案2
方程式也可以使用选项左对齐fleqn
,例如:
\documentclass[11pt,fleqn]{article}
\setlength{\mathindent}{.5\mathindent}
\usepackage[normalem]{ulem}
\begin{document}
\begin{center}
\uline{TCS-505}\\
\uline{DAA TUT-1}
\end{center}
\begin{flushright}
\bfseries
\begin{tabular}{@{}ll@{}}
Name:& Megha Saraswat\\
Sec:& Purple\\
Roll No:& 65
\end{tabular}%
\end{flushright}
\uline{I. Logarithm Properties:}
\begin{enumerate}
\item \[\log_{a}x^{k}=k\log_{a}x\]
\item \[\log_{a}(mn)=\log_{a}m+\log_{a}n\]
\item \[\log_{a}(m/n)=\log_{a}m-\log_{a}n\]
\item \[\log_{a}x=\frac{1}{\log_{x}a}=\frac{\log_{b}x}{\log_{b}a}\]
\item \[x^{\log_{a}y}=y^{\log_{a}x}\]
\end{enumerate}
\uline{II. Exponential Properties:}
\begin{enumerate}
\item \[\left( a^{m}\right) ^{n}=a^{mn}\]
\item \[a^{m}a^{n}=a^{m+n}\]
\item \[\frac{a^{m}}{a^{n}}=a^{m-n}\]
\item \[\lim_{n\rightarrow\infty} \frac{n^{b}}{a^{n}}=0\]
\end{enumerate}
\uline{III. Series:}
\begin{enumerate}
\item \[1+2+3+\cdots+n=\frac{n\left( n+1\right) }{2}\]
\item \[1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n\left( n+1\right)
\left(2n+1\right) }{6}\]
\item \[1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}
\left(n+1\right)^{2}}{4}\]
\item \[1+x+x^{2}+x^{3}+\cdots+x^{k-1}=\frac{x^{k}-1}{x-1}\]
\end{enumerate}
\end{document}
评论:
- 方程式的缩进可以用长度来配置
\mathindent
。 \uline
用于与包一起划线ulem
。- 这些方程是通过环境枚举的
enumerate
。 - A
tabular
用于名称字段。