循环遍历嵌套列表

循环遍历嵌套列表

我有一大堆数据如下:

{ { {AA},{AB}, ... {AZ} }, { {BA}, {BB}, ... {BZ} }, ... ... { {ZA}, {ZB}, ... {ZZ} } }

在名为 的宏中定义\clebschdata。每个术语 XX 都是一个包含 11 个数字的列表(例如,{2,4,5,1,2,0,0,0,3,1,1})。换句话说,\clebschdata是一个包含 11 个事物的列表,每个事物都是一个包含 11 个事物的列表,每个事物都是一个包含 11 个数字的列表。

数据对应于我想放入 12x12 表格的矩阵。我希望左列(按降序排列)看起来像\bigotimes \chi_1 \chi_2 ... \chi_11,顶行(从左到右)相同:\bigotimes \chi_1 \chi_2 ... \chi_11\bigotimes其中两者中的对应于左上角的单元格。

我定义了一个宏\chisum,我想将我的数据的每个条目传递给它,然后再将其放入剩余的 11x11 表中。

我如何循环遍历我的列表以满足这些规格?

我尝试了几个不同软件包中的几个循环宏,但都无法正常工作。具体来说,我有以下问题:

\def\ttand{&}
\def\clebschtable#1{\hline\@for\tmpi:=#1\do{\chi\@for\tmpj:=\tmpi\do{\ttand$\chisum\tmpj$}}}

...

...

\begin{tabular}

\clebschtable{\clebschdata}

\end{tabular}

但它却给我带来! Undefined control sequence.悲痛\tmpj

编辑:

\def\clebschdata {{{1,0,0,0,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,0,0,0},{0,0,1,0,0,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,0,0},{0,0,0,0,1,0,0,0,0,0,0},{0,0,0,0,0,1,0,0,0,0,0},{0,0,0,0,0,0,1,0,0,0,0},{0,0,0,0,0,0,0,1,0,0,0},{0,0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0,0,0,0,0,1,0},{0,0,0,0,0,0,0,0,0,0,1}},{{0,1,0,0,0,0,0,0,0,0,0},{0,0,1,0,0,1,0,0,0,0,0},{1,0,0,0,0,0,0,0,0,1,0},{0,0,0,0,1,0,0,0,0,0,1},{0,0,0,0,0,0,1,1,0,0,0},{0,0,1,0,0,0,0,0,1,1,0},{0,0,0,1,0,0,1,0,0,0,1},{0,0,0,1,0,0,0,1,0,0,1},{0,0,0,0,0,1,0,0,1,1,0},{0,1,0,0,0,1,0,0,1,1,0},{0,0,0,0,1,0,1,1,0,0,1}},{{0,0,1,0,0,0,0,0,0,0,0},{1,0,0,0,0,0,0,0,0,1,0},{0,1,0,0,0,1,0,0,0,0,0},{0,0,0,0,0,0,1,1,0,0,0},{0,0,0,1,0,0,0,0,0,0,1},{0,1,0,0,0,0,0,0,1,1,0},{0,0,0,0,1,0,1,0,0,0,1},{0,0,0,0,1,0,0,1,0,0,1},{0,0,0,0,0,1,0,0,1,1,0},{0,0,1,0,0,1,0,0,1,1,0},{0,0,0,1,0,0,1,1,0,0,1}},{{0,0,0,1,0,0,0,0,0,0,0},{0,0,0,0,1,0,0,0,0,0,1},{0,0,0,0,0,0,1,1,0,0,0},{0,0,1,0,0,1,0,0,1,0,0},{1,0,0,0,0,0,0,0,1,1,0},{0,0,0,0,1,0,1,1,0,0,1},{0,1,0,0,0,1,0,0,1,1,0},{0,1,0,0,0,1,0,0,1,1,0},{0,0,0,1,1,0,1,1,0,0,1},{0,0,0,1,0,0,1,1,0,0,2},{0,0,1,0,0,1,0,0,1,2,0}},{{0,0,0,0,1,0,0,0,0,0,0},{0,0,0,0,0,0,1,1,0,0,0},{0,0,0,1,0,0,0,0,0,0,1},{1,0,0,0,0,0,0,0,1,1,0},{0,1,0,0,0,1,0,0,1,0,0},{0,0,0,1,0,0,1,1,0,0,1},{0,0,1,0,0,1,0,0,1,1,0},{0,0,1,0,0,1,0,0,1,1,0},{0,0,0,1,1,0,1,1,0,0,1},{0,0,0,0,1,0,1,1,0,0,2},{0,1,0,0,0,1,0,0,1,2,0}},{{0,0,0,0,0,1,0,0,0,0,0},{0,0,1,0,0,0,0,0,1,1,0},{0,1,0,0,0,0,0,0,1,1,0},{0,0,0,0,1,0,1,1,0,0,1},{0,0,0,1,0,0,1,1,0,0,1},{1,0,0,0,0,2,0,0,1,2,0},{0,0,0,1,1,0,1,1,0,0,2},{0,0,0,1,1,0,1,1,0,0,2},{0,1,1,0,0,1,0,0,2,2,0},{0,1,1,0,0,2,0,0,2,2,0},{0,0,0,1,1,0,2,2,0,0,2}},{{0,0,0,0,0,0,1,0,0,0,0},{0,0,0,1,0,0,1,0,0,0,1},{0,0,0,0,1,0,1,0,0,0,1},{0,1,0,0,0,1,0,0,1,1,0},{0,0,1,0,0,1,0,0,1,1,0},{0,0,0,1,1,0,1,1,0,0,2},{1,1,1,0,0,1,0,0,1,2,0},{0,0,0,0,0,1,0,0,2,2,0},{0,0,0,1,1,0,1,2,0,0,2},{0,0,0,1,1,0,2,2,0,0,2},{0,1,1,0,0,2,0,0,2,2,0}},{{0,0,0,0,0,0,0,1,0,0,0},{0,0,0,1,0,0,0,1,0,0,1},{0,0,0,0,1,0,0,1,0,0,1},{0,1,0,0,0,1,0,0,1,1,0},{0,0,1,0,0,1,0,0,1,1,0},{0,0,0,1,1,0,1,1,0,0,2},{0,0,0,0,0,1,0,0,2,2,0},{1,1,1,0,0,1,0,0,1,2,0},{0,0,0,1,1,0,2,1,0,0,2},{0,0,0,1,1,0,2,2,0,0,2},{0,1,1,0,0,2,0,0,2,2,0}},{{0,0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0,1,0,0,1,1,0},{0,0,0,0,0,1,0,0,1,1,0},{0,0,0,1,1,0,1,1,0,0,1},{0,0,0,1,1,0,1,1,0,0,1},{0,1,1,0,0,1,0,0,2,2,0},{0,0,0,1,1,0,1,2,0,0,2},{0,0,0,1,1,0,2,1,0,0,2},{1,1,1,0,0,2,0,0,2,2,0},{0,1,1,0,0,2,0,0,2,3,0},{0,0,0,1,1,0,2,2,0,0,3}},{{0,0,0,0,0,0,0,0,0,1,0},{0,1,0,0,0,1,0,0,1,1,0},{0,0,1,0,0,1,0,0,1,1,0},{0,0,0,1,0,0,1,1,0,0,2},{0,0,0,0,1,0,1,1,0,0,2},{0,1,1,0,0,2,0,0,2,2,0},{0,0,0,1,1,0,2,2,0,0,2},{0,0,0,1,1,0,2,2,0,0,2},{0,1,1,0,0,2,0,0,2,3,0},{1,1,1,0,0,2,0,0,3,3,0},{0,0,0,2,2,0,2,2,0,0,3}},{{0,0,0,0,0,0,0,0,0,0,1},{0,0,0,0,1,0,1,1,0,0,1},{0,0,0,1,0,0,1,1,0,0,1},{0,0,1,0,0,1,0,0,1,2,0},{0,1,0,0,0,1,0,0,1,2,0},{0,0,0,1,1,0,2,2,0,0,2},{0,1,1,0,0,2,0,0,2,2,0},{0,1,1,0,0,2,0,0,2,2,0},{0,0,0,1,1,0,2,2,0,0,3},{0,0,0,2,2,0,2,2,0,0,3},{1,1,1,0,0,2,0,0,3,3,0}}}

\makeatletter
\def\thect{\value{ct}}
\newcounter{ct}
\def\chisum#1{\setcounter{ct}{0}\@for\tmp:=#1\do{\stepcounter{ct}\expandafter\zzz\tmp\relax}}
\def\zzz#1\relax{
    \ifnum #1=1
    \zzsep\chi_{\thect}
    \else
    \ifnum #1=0
    \else
    \zzsep#1\chi_{\thect}
    \fi
    \fi
}
\def\zzsep{\def\zzsep{\oplus}}
\makeatother

另外有人看到下面的内容有什么问题吗?

\def\decompgirreps{{1,0,0,0,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,0,0,0},{0,0,1,0,0,0,0,0,0,0,0}, {0,0,0,0,0,1,0,0,0,0,0},{0,0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0,0,0,0,1,0,0}, {1,0,0,0,0,1,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,1,0},{0,0,0,1,1,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0,1},{0,0,0,0,0,0,0,0,0,0,1},{0,0,0,0,0,1,0,0,0,1,0}, {0,1,1,0,0,0,0,0,1,1,0},{0,0,0,0,0,1,0,0,1,1,0},{0,0,0,0,1,0,1,1,0,0,1}, {0,0,0,1,0,0,1,1,0,0,1}}
\begin{tabular}{| c || c | }
    \hline $G^4$ Irreps & Decomp into $SL_2^7$ Irreps \\ \hline \hline
\setcounter{rowindex}{0}
\xintFor #1 in \decompgirreps \do {%
   \stepcounter{rowindex}
   $\mu_{\arabic{rowindex}}$ & $\chisum{#1}$%
   \\ \hline
}%
\end{tabular}

带有 的部分\chisum不起作用。当我删除该\chisum部分并保留原样#1时,我看到它确实在循环\decompgirreps,但它周围没有括号。它似乎被扩展为,\chisum0,0,0,1,0,0,1,1,0,0,1例如,但它应该是\chisum{0,0,0,1,0,0,1,1,0,0,1}。可能有一个非常简单的解决方法...

答案1

(编辑) 2017:因为xint 1.1 (2014/10/28)这里需要\usepackage{xinttools}。代码已更新,以替换\usepackage{xint}初始答案。

我正在编辑这个答案,因为1.09f发布了信特在处理逗号分隔列表时,透明地删除逗号周围的所有空格。因此,这里提到的一些先前问题现在已不相关,并且已被删除。

\documentclass[border=12pt]{standalone}

\usepackage{xinttools}     % for \xintFor and \xintFor* loops

% the macro \chisum is also written using an \xintFor loop.
% the math mode dollar signs are in the tabular not in this \chisum

\newcounter{ct}
\def\chisum#1{\def\chisep{\def\chisep{\oplus}}%
              \setcounter{ct}{0}%
              \xintFor ##1 in {#1}\do % #1 is a comma separated list
                  {\stepcounter{ct}%
                   \ifcase ##1
                           \or   \chisep    \chi_{\thect}
                           \else \chisep ##1\chi_{\thect}
                   \fi}%
              }% end of \chisum definition

\newcounter{rowindex}

\begin{document}\thispagestyle{empty}

% ADDED REMARK: since xint 1.09f, spaces around commas are transparently removed. 
% This is made a bit extreme here for demonstrative purposes.

\def\decompgirreps{ {    1,0,0,0,0,0,0,0,0,0,0} , {0,1,0,0,0,0,0,0,0,0,0}
  ,{0,0,1,0,0,0,0,0,0,0,0} ,
  {0,0,0,0,0,1,0,0,0,0,0},{0,0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0,0,0,0,1,0,0},{1,0,0
    ,0,0,1,0,0,0,0,0},  {0,0,0,0,0,0,0,0,0,1,0},{0,0,0,1,1,0,0,0,0,0,0}, {
           0,0,0, 0 ,0   ,0,0,0,0,0,1},
         {0,0,0,0,0,0,0,0,0,0,1},{0,0,0,0,0,1,0,0,0,1,0},{0,1,1,0,0,0,0,0,1,1,0},{0,0,0,0,0,1,0,0,1,1,0},{0,0,0,0,1,0,1,1,0,0,1},{0,0,0,1,0,0,1,1,0,0,1
                 }}

\setcounter{rowindex}{0}
\begin{tabular}{| c || c | }
    \hline $G^4$ Irreps & Decomp into $SL_2^7$ Irreps \\ \hline \hline
\xintFor #1 in \decompgirreps\do {%
   \stepcounter{rowindex}
   $\mu_{\arabic{rowindex}}$ & $\chisum{#1}$%
   \\ \hline
}%
\end{tabular}

\end{document}

输出:

克莱布希系数


以下是研究人员提供的原始数据:

\documentclass[border=12pt]{standalone}

\usepackage{xinttools}     % for \xintFor*

% The original \clebschdata

\def\clebschdata {{{1,0,0,0,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,0,0,0},{0,0,1,0,0,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,0,0},{0,0,0,0,1,0,0,0,0,0,0},{0,0,0,0,0,1,0,0,0,0,0},{0,0,0,0,0,0,1,0,0,0,0},{0,0,0,0,0,0,0,1,0,0,0},{0,0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0,0,0,0,0,1,0},{0,0,0,0,0,0,0,0,0,0,1}},{{0,1,0,0,0,0,0,0,0,0,0},{0,0,1,0,0,1,0,0,0,0,0},{1,0,0,0,0,0,0,0,0,1,0},{0,0,0,0,1,0,0,0,0,0,1},{0,0,0,0,0,0,1,1,0,0,0},{0,0,1,0,0,0,0,0,1,1,0},{0,0,0,1,0,0,1,0,0,0,1},{0,0,0,1,0,0,0,1,0,0,1},{0,0,0,0,0,1,0,0,1,1,0},{0,1,0,0,0,1,0,0,1,1,0},{0,0,0,0,1,0,1,1,0,0,1}},{{0,0,1,0,0,0,0,0,0,0,0},{1,0,0,0,0,0,0,0,0,1,0},{0,1,0,0,0,1,0,0,0,0,0},{0,0,0,0,0,0,1,1,0,0,0},{0,0,0,1,0,0,0,0,0,0,1},{0,1,0,0,0,0,0,0,1,1,0},{0,0,0,0,1,0,1,0,0,0,1},{0,0,0,0,1,0,0,1,0,0,1},{0,0,0,0,0,1,0,0,1,1,0},{0,0,1,0,0,1,0,0,1,1,0},{0,0,0,1,0,0,1,1,0,0,1}},{{0,0,0,1,0,0,0,0,0,0,0},{0,0,0,0,1,0,0,0,0,0,1},{0,0,0,0,0,0,1,1,0,0,0},{0,0,1,0,0,1,0,0,1,0,0},{1,0,0,0,0,0,0,0,1,1,0},{0,0,0,0,1,0,1,1,0,0,1},{0,1,0,0,0,1,0,0,1,1,0},{0,1,0,0,0,1,0,0,1,1,0},{0,0,0,1,1,0,1,1,0,0,1},{0,0,0,1,0,0,1,1,0,0,2},{0,0,1,0,0,1,0,0,1,2,0}},{{0,0,0,0,1,0,0,0,0,0,0},{0,0,0,0,0,0,1,1,0,0,0},{0,0,0,1,0,0,0,0,0,0,1},{1,0,0,0,0,0,0,0,1,1,0},{0,1,0,0,0,1,0,0,1,0,0},{0,0,0,1,0,0,1,1,0,0,1},{0,0,1,0,0,1,0,0,1,1,0},{0,0,1,0,0,1,0,0,1,1,0},{0,0,0,1,1,0,1,1,0,0,1},{0,0,0,0,1,0,1,1,0,0,2},{0,1,0,0,0,1,0,0,1,2,0}},{{0,0,0,0,0,1,0,0,0,0,0},{0,0,1,0,0,0,0,0,1,1,0},{0,1,0,0,0,0,0,0,1,1,0},{0,0,0,0,1,0,1,1,0,0,1},{0,0,0,1,0,0,1,1,0,0,1},{1,0,0,0,0,2,0,0,1,2,0},{0,0,0,1,1,0,1,1,0,0,2},{0,0,0,1,1,0,1,1,0,0,2},{0,1,1,0,0,1,0,0,2,2,0},{0,1,1,0,0,2,0,0,2,2,0},{0,0,0,1,1,0,2,2,0,0,2}},{{0,0,0,0,0,0,1,0,0,0,0},{0,0,0,1,0,0,1,0,0,0,1},{0,0,0,0,1,0,1,0,0,0,1},{0,1,0,0,0,1,0,0,1,1,0},{0,0,1,0,0,1,0,0,1,1,0},{0,0,0,1,1,0,1,1,0,0,2},{1,1,1,0,0,1,0,0,1,2,0},{0,0,0,0,0,1,0,0,2,2,0},{0,0,0,1,1,0,1,2,0,0,2},{0,0,0,1,1,0,2,2,0,0,2},{0,1,1,0,0,2,0,0,2,2,0}},{{0,0,0,0,0,0,0,1,0,0,0},{0,0,0,1,0,0,0,1,0,0,1},{0,0,0,0,1,0,0,1,0,0,1},{0,1,0,0,0,1,0,0,1,1,0},{0,0,1,0,0,1,0,0,1,1,0},{0,0,0,1,1,0,1,1,0,0,2},{0,0,0,0,0,1,0,0,2,2,0},{1,1,1,0,0,1,0,0,1,2,0},{0,0,0,1,1,0,2,1,0,0,2},{0,0,0,1,1,0,2,2,0,0,2},{0,1,1,0,0,2,0,0,2,2,0}},{{0,0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0,1,0,0,1,1,0},{0,0,0,0,0,1,0,0,1,1,0},{0,0,0,1,1,0,1,1,0,0,1},{0,0,0,1,1,0,1,1,0,0,1},{0,1,1,0,0,1,0,0,2,2,0},{0,0,0,1,1,0,1,2,0,0,2},{0,0,0,1,1,0,2,1,0,0,2},{1,1,1,0,0,2,0,0,2,2,0},{0,1,1,0,0,2,0,0,2,3,0},{0,0,0,1,1,0,2,2,0,0,3}},{{0,0,0,0,0,0,0,0,0,1,0},{0,1,0,0,0,1,0,0,1,1,0},{0,0,1,0,0,1,0,0,1,1,0},{0,0,0,1,0,0,1,1,0,0,2},{0,0,0,0,1,0,1,1,0,0,2},{0,1,1,0,0,2,0,0,2,2,0},{0,0,0,1,1,0,2,2,0,0,2},{0,0,0,1,1,0,2,2,0,0,2},{0,1,1,0,0,2,0,0,2,3,0},{1,1,1,0,0,2,0,0,3,3,0},{0,0,0,2,2,0,2,2,0,0,3}},{{0,0,0,0,0,0,0,0,0,0,1},{0,0,0,0,1,0,1,1,0,0,1},{0,0,0,1,0,0,1,1,0,0,1},{0,0,1,0,0,1,0,0,1,2,0},{0,1,0,0,0,1,0,0,1,2,0},{0,0,0,1,1,0,2,2,0,0,2},{0,1,1,0,0,2,0,0,2,2,0},{0,1,1,0,0,2,0,0,2,2,0},{0,0,0,1,1,0,2,2,0,0,3},{0,0,0,2,2,0,2,2,0,0,3},{1,1,1,0,0,2,0,0,3,3,0}}}


% the macro \chisum in its original style with some modifications to let it work

\makeatletter
\newcounter{ct}
\def\chisum#1{$\def\zzsep{\def\zzsep{\oplus}}\setcounter{ct}{0}%
              \@for\tmp:=#1\do
              {\stepcounter{ct}\expandafter\zzz\tmp\relax}$}
\makeatother
% auxiliary macro for the original \chisum
\def\zzz#1\relax{
    \ifnum #1=1
    \zzsep\chi_{\thect}
    \else
    \ifnum #1=0
    \else
    \zzsep#1\chi_{\thect}
    \fi
    \fi
}

\newcounter{rowindex}

\begin{document}\thispagestyle{empty}

\setcounter{rowindex}{0}
\begin{tabular}{*{12}c}
$\bigotimes$&$\chi_1$&$\chi_2$&$\chi_3$&$\chi_4$&$\chi_5$&$\chi_6$&$\chi_7$&$\chi_8$&$\chi_9$&$\chi_{10}$&$\chi_{11}$ \\
\xintFor #1 in \clebschdata \do {%
   \stepcounter{rowindex}
   $\chi_{\arabic{rowindex}}$ \xintFor #2 in {#1} \do {&\chisum{#2}}%
   \\
}%  
\end{tabular}

\end{document}

图像显示得大大缩小了,但如果您将图像拖到桌面,它就有正确的大小。

克莱布什系数


这是我的第一个回答:

\documentclass{article}
\usepackage{xint}     % for \xintFor* (needs xint v1.09c)

\usepackage{xintexpr} 
% only used because I didn't know what to do with \chisum

%% \usepackage{array} % (not needed here)

% This was the hardest part, generating this:
\def\clebschdata {{{2,1,7,2,9,5,6,0,3,0,2},{1,7,1,1,9,5,1,2,5,8,1},{6,6,1,9,4,1,5,7,3,1,9},{1,9,9,1,4,0,6,7,8,6,5},{2,5,5,5,9,5,2,7,3,7,3},{2,5,8,9,0,5,7,7,4,0,0},{5,5,2,9,2,3,9,8,1,7,5},{7,0,3,0,4,1,0,8,1,8,9},{9,6,6,3,6,6,7,2,5,9,5},{0,4,4,8,1,5,0,1,6,9,9},{2,7,2,7,4,6,4,8,2,5,9}},{{3,4,6,0,0,0,1,0,5,6,5},{4,2,6,4,0,3,0,0,0,5,8},{1,0,9,8,4,5,2,1,6,5,0},{3,1,9,6,0,4,1,4,8,6,9},{0,7,6,7,5,7,8,2,2,8,1},{7,7,9,9,2,2,1,6,8,0,2},{5,4,9,7,8,9,5,7,1,9,2},{4,1,4,0,2,3,8,4,2,6,4},{5,5,8,2,7,7,1,3,1,1,3},{4,5,5,0,7,0,5,2,4,2,2},{1,2,4,0,0,2,8,8,7,8,8}},{{3,2,1,6,8,2,0,1,5,8,8},{3,3,5,7,6,9,2,5,1,0,8},{7,3,5,8,4,6,7,3,0,8,8},{0,9,8,0,4,7,1,5,7,0,1},{9,8,4,5,3,9,2,5,9,3,6},{3,6,0,9,1,4,9,6,5,9,2},{6,4,9,9,8,5,0,3,2,3,1},{2,5,9,5,7,4,9,1,7,6,7},{7,7,1,9,2,7,6,6,2,0,4},{7,2,2,7,4,5,6,0,2,1,4},{1,2,5,9,7,5,1,0,0,8,1}},{{1,7,7,6,9,2,8,6,3,0,5},{4,4,6,4,7,7,3,1,0,7,4},{6,7,9,9,5,5,6,2,5,2,0},{9,1,0,7,3,9,7,5,5,9,3},{8,6,5,0,0,9,0,6,8,6,5},{7,6,6,2,5,7,5,4,9,8,7},{7,6,1,7,1,4,4,1,6,5,2},{4,3,2,6,8,9,4,2,9,2,9},{0,8,8,3,7,9,7,9,1,8,6},{1,0,9,9,8,6,0,8,8,8,5},{5,2,3,6,0,4,9,2,3,4,8}},{{8,7,0,3,7,9,8,2,7,0,7},{9,1,8,7,8,7,0,8,9,0,4},{8,9,3,5,5,3,3,2,8,9,8},{9,7,6,9,1,4,5,4,3,3,0},{9,4,4,3,7,3,0,2,9,9,8},{8,2,0,1,9,4,0,5,1,6,6},{4,9,3,5,1,1,0,6,7,2,8},{4,1,5,7,1,4,3,1,0,8,7},{0,0,6,2,8,6,4,2,8,7,0},{9,7,8,5,3,4,5,7,5,3,5},{7,9,0,3,8,1,9,4,0,1,6}},{{4,4,6,8,4,7,1,0,0,6,7},{0,9,0,4,5,7,6,5,9,0,5},{3,6,8,9,9,7,5,1,7,1,2},{4,7,9,5,2,9,4,8,6,3,4},{4,1,8,6,3,7,4,1,2,1,7},{4,8,9,3,0,2,5,0,5,7,6},{6,9,6,1,9,1,1,6,3,7,8},{1,7,1,8,2,9,0,5,1,4,0},{0,7,9,9,4,5,0,5,9,7,8},{2,7,0,4,3,9,6,9,7,8,2},{8,8,0,4,8,7,4,1,8,3,3}},{{8,0,5,8,4,2,6,8,0,8,0},{0,8,5,9,3,2,1,3,4,7,4},{4,4,0,4,7,2,6,2,6,7,4},{1,0,9,4,2,2,5,9,9,4,4},{7,0,7,6,0,1,8,2,4,2,9},{6,9,5,8,9,1,8,1,0,0,3},{3,6,3,3,2,7,4,0,4,9,5},{5,1,8,4,9,8,3,0,0,7,2},{7,2,5,3,5,1,7,4,0,6,5},{3,9,9,9,8,9,4,3,4,5,7},{3,5,9,6,9,9,9,4,1,8,9}},{{0,1,5,4,7,8,3,4,9,6,8},{0,3,9,5,8,5,1,3,0,9,2},{3,2,4,2,1,7,7,1,8,2,2},{0,0,7,7,8,3,1,9,7,4,5},{0,2,1,0,4,2,8,0,7,5,8},{5,9,7,6,1,5,7,3,5,4,4},{1,7,2,2,8,6,8,8,6,5,4},{4,9,2,9,4,7,5,7,7,8,7},{5,9,9,7,1,1,2,1,1,6,7},{8,3,1,7,9,8,4,1,1,6,6},{4,2,3,0,7,4,8,9,1,2,6}},{{4,1,5,3,2,6,9,1,1,9,0},{1,9,5,2,8,4,2,9,8,0,1},{5,4,6,0,7,4,0,6,3,6,3},{9,0,8,5,0,3,4,0,7,3,5},{0,0,1,4,9,6,7,6,8,7,4},{0,4,2,5,0,8,2,3,2,2,2},{8,0,7,2,3,3,7,9,5,2,7},{7,2,5,4,3,9,7,8,5,8,7},{4,0,2,4,8,9,9,1,8,8,2},{2,3,0,7,1,3,6,9,4,5,5},{3,5,2,2,6,8,9,2,5,3,2}},{{0,0,4,4,3,7,4,7,9,0,8},{9,2,6,0,2,4,4,0,6,1,3},{4,9,9,0,9,3,1,3,4,2,3},{3,7,4,2,4,5,0,1,2,2,3},{8,2,8,5,5,8,3,4,7,5,6},{7,3,1,0,5,7,0,7,0,9,1},{1,6,2,0,2,0,8,1,3,8,9},{0,0,1,3,9,1,1,1,4,4,7},{6,3,9,5,0,7,6,5,1,1,2},{9,6,2,0,1,7,2,9,2,0,8},{1,2,1,2,9,1,0,9,5,1,0}},{{6,4,4,6,6,7,1,0,1,0,2},{3,0,8,5,4,5,6,6,9,0,5},{5,6,2,6,9,7,0,0,1,1,7},{9,8,0,5,9,4,8,3,3,5,0},{6,4,8,8,9,3,2,7,1,5,8},{4,2,8,5,6,8,9,1,2,9,9},{3,7,1,3,5,7,1,2,9,0,2},{1,4,6,5,4,2,4,6,4,2,0},{9,6,1,8,0,5,9,8,3,5,5},{3,1,5,2,8,9,9,3,2,9,0},{9,5,4,2,3,4,0,9,4,6,3}}}


\def\chisum #1{\xintthenumexpr sum(#1)\relax}

\newcounter{rowindex}

\begin{document}\thispagestyle{empty}

\setcounter{rowindex}{0}
\begin{tabular}{*{12}c}
$\bigotimes$&$\chi_1$&$\chi_2$&$\chi_3$&$\chi_4$&$\chi_5$&$\chi_6$&$\chi_7$&$\chi_8$&$\chi_9$&$\chi_{10}$&$\chi_{11}$ \\
\xintFor #1 in \clebschdata \do {%
   \stepcounter{rowindex}
   $\chi_{\arabic{rowindex}}$ \xintFor #2 in {#1} \do {&\chisum{#2}}%
   \\
}%  
\end{tabular}


\end{document}

输出:

表格中的循环


一些关于 的信息\xintFor

这是来自的实用程序信特(版本1.09c及更高版本)。它不是完全可扩展的,但具有完全可扩展宏的一些属性:嵌套、处理组关闭上下文(如表格内部(LaTeX)或一般对齐)的能力。两种形式( 之前和之后in、 之前和之后\do、 之前的空格#1是可选的):

\xintFor  #1 in {a,b,c} \do {stuff with #1=a then b then c}
\xintFor* #1 in {{a}{b}{c}} \do {stuff with #1=a then b then c}

在第一种形式中,列表开头、逗号周围和结尾的空格自发布以来被透明地删除1.09f

在第二种形式中,分隔括号项的空格不计算在内。每个单独的括号项内的空格都有意义。

也可以写成\xintFor #1 in \Tmp \do {stuff}或等价的形式\xintFor #1 in {\Tmp} \do {stuff}。但\Tmp必须展开为一步以逗号分隔的列表。

略有\xintFor*不同,\Tmp会不断扩展,直到遇到括号或开头无法扩展的内容。 因此,\def\x{{a}{b}{c}}\def\y{\x}\xintFor* #1 in \y \do {stuff}可以,因为 \y会扩展为\x然后会扩展为{a}{b}{c}。 也可以有\def\x {{a} {b} {c}}\def\y {{d} {e) {f)}然后\xintFor* #1 in {\x\y} \do {...}就像\xintFor* #1 in {{a}{b}{c}{d}{e}{f}} \do {...}

答案2

在此处输入图片描述

感谢 jfbu 提供的数据

\documentclass[a4paper]{article}
\usepackage{pdflscape,array}
\makeatletter
\def\clebstable#1{%
\begin{tabular}{l*{12}{>{\centering}p{1.5cm}}}%
$\bigotimes$&$\chi_1$&$\chi_2$&$\chi_3$&$\chi_4$&$\chi_5$&$\chi_6$&$\chi_7$&$\chi_8$&$\chi_9$&$\chi_{10}$&$\chi_{11}$ \tabularnewline
\clebA1#1\relax
\end{tabular}}

\def\clebA#1#2#3{%
  $\chi_{#1}$\clebB#2\relax
  \ifx\relax#3\else\tabularnewline\expandafter\clebA\expandafter{\the\numexpr#1+1\expandafter}\fi}

\def\clebB#1#2{%
  &$\gdef\clebD{\gdef\clebD{\oplus}}\clebC1#1,$%
  \ifx\relax#2\else\expandafter\clebB\fi}

\def\clebC#1#2,{%
 \ifnum#2=\z@\else
  \clebD
  \ifnum#2=\@ne\else#2\fi
  \chi_{#1}%
 \fi
 \ifnum#1<11 \expandafter\clebC\expandafter{\the\numexpr#1+1\expandafter}\fi}


\begin{document}

\begin{landscape}\tiny
\clebstable {{{2,1,7,2,9,5,6,0,3,0,2},{1,7,1,1,9,5,1,2,5,8,1},{6,6,1,9,4,1,5,7,3,1,9},{1,9,9,1,4,0,6,7,8,6,5},{2,5,5,5,9,5,2,7,3,7,3},{2,5,8,9,0,5,7,7,4,0,0},{5,5,2,9,2,3,9,8,1,7,5},{7,0,3,0,4,1,0,8,1,8,9},{9,6,6,3,6,6,7,2,5,9,5},{0,4,4,8,1,5,0,1,6,9,9},{2,7,2,7,4,6,4,8,2,5,9}},{{3,4,6,0,0,0,1,0,5,6,5},{4,2,6,4,0,3,0,0,0,5,8},{1,0,9,8,4,5,2,1,6,5,0},{3,1,9,6,0,4,1,4,8,6,9},{0,7,6,7,5,7,8,2,2,8,1},{7,7,9,9,2,2,1,6,8,0,2},{5,4,9,7,8,9,5,7,1,9,2},{4,1,4,0,2,3,8,4,2,6,4},{5,5,8,2,7,7,1,3,1,1,3},{4,5,5,0,7,0,5,2,4,2,2},{1,2,4,0,0,2,8,8,7,8,8}},{{3,2,1,6,8,2,0,1,5,8,8},{3,3,5,7,6,9,2,5,1,0,8},{7,3,5,8,4,6,7,3,0,8,8},{0,9,8,0,4,7,1,5,7,0,1},{9,8,4,5,3,9,2,5,9,3,6},{3,6,0,9,1,4,9,6,5,9,2},{6,4,9,9,8,5,0,3,2,3,1},{2,5,9,5,7,4,9,1,7,6,7},{7,7,1,9,2,7,6,6,2,0,4},{7,2,2,7,4,5,6,0,2,1,4},{1,2,5,9,7,5,1,0,0,8,1}},{{1,7,7,6,9,2,8,6,3,0,5},{4,4,6,4,7,7,3,1,0,7,4},{6,7,9,9,5,5,6,2,5,2,0},{9,1,0,7,3,9,7,5,5,9,3},{8,6,5,0,0,9,0,6,8,6,5},{7,6,6,2,5,7,5,4,9,8,7},{7,6,1,7,1,4,4,1,6,5,2},{4,3,2,6,8,9,4,2,9,2,9},{0,8,8,3,7,9,7,9,1,8,6},{1,0,9,9,8,6,0,8,8,8,5},{5,2,3,6,0,4,9,2,3,4,8}},{{8,7,0,3,7,9,8,2,7,0,7},{9,1,8,7,8,7,0,8,9,0,4},{8,9,3,5,5,3,3,2,8,9,8},{9,7,6,9,1,4,5,4,3,3,0},{9,4,4,3,7,3,0,2,9,9,8},{8,2,0,1,9,4,0,5,1,6,6},{4,9,3,5,1,1,0,6,7,2,8},{4,1,5,7,1,4,3,1,0,8,7},{0,0,6,2,8,6,4,2,8,7,0},{9,7,8,5,3,4,5,7,5,3,5},{7,9,0,3,8,1,9,4,0,1,6}},{{4,4,6,8,4,7,1,0,0,6,7},{0,9,0,4,5,7,6,5,9,0,5},{3,6,8,9,9,7,5,1,7,1,2},{4,7,9,5,2,9,4,8,6,3,4},{4,1,8,6,3,7,4,1,2,1,7},{4,8,9,3,0,2,5,0,5,7,6},{6,9,6,1,9,1,1,6,3,7,8},{1,7,1,8,2,9,0,5,1,4,0},{0,7,9,9,4,5,0,5,9,7,8},{2,7,0,4,3,9,6,9,7,8,2},{8,8,0,4,8,7,4,1,8,3,3}},{{8,0,5,8,4,2,6,8,0,8,0},{0,8,5,9,3,2,1,3,4,7,4},{4,4,0,4,7,2,6,2,6,7,4},{1,0,9,4,2,2,5,9,9,4,4},{7,0,7,6,0,1,8,2,4,2,9},{6,9,5,8,9,1,8,1,0,0,3},{3,6,3,3,2,7,4,0,4,9,5},{5,1,8,4,9,8,3,0,0,7,2},{7,2,5,3,5,1,7,4,0,6,5},{3,9,9,9,8,9,4,3,4,5,7},{3,5,9,6,9,9,9,4,1,8,9}},{{0,1,5,4,7,8,3,4,9,6,8},{0,3,9,5,8,5,1,3,0,9,2},{3,2,4,2,1,7,7,1,8,2,2},{0,0,7,7,8,3,1,9,7,4,5},{0,2,1,0,4,2,8,0,7,5,8},{5,9,7,6,1,5,7,3,5,4,4},{1,7,2,2,8,6,8,8,6,5,4},{4,9,2,9,4,7,5,7,7,8,7},{5,9,9,7,1,1,2,1,1,6,7},{8,3,1,7,9,8,4,1,1,6,6},{4,2,3,0,7,4,8,9,1,2,6}},{{4,1,5,3,2,6,9,1,1,9,0},{1,9,5,2,8,4,2,9,8,0,1},{5,4,6,0,7,4,0,6,3,6,3},{9,0,8,5,0,3,4,0,7,3,5},{0,0,1,4,9,6,7,6,8,7,4},{0,4,2,5,0,8,2,3,2,2,2},{8,0,7,2,3,3,7,9,5,2,7},{7,2,5,4,3,9,7,8,5,8,7},{4,0,2,4,8,9,9,1,8,8,2},{2,3,0,7,1,3,6,9,4,5,5},{3,5,2,2,6,8,9,2,5,3,2}},{{0,0,4,4,3,7,4,7,9,0,8},{9,2,6,0,2,4,4,0,6,1,3},{4,9,9,0,9,3,1,3,4,2,3},{3,7,4,2,4,5,0,1,2,2,3},{8,2,8,5,5,8,3,4,7,5,6},{7,3,1,0,5,7,0,7,0,9,1},{1,6,2,0,2,0,8,1,3,8,9},{0,0,1,3,9,1,1,1,4,4,7},{6,3,9,5,0,7,6,5,1,1,2},{9,6,2,0,1,7,2,9,2,0,8},{1,2,1,2,9,1,0,9,5,1,0}},{{6,4,4,6,6,7,1,0,1,0,2},{3,0,8,5,4,5,6,6,9,0,5},{5,6,2,6,9,7,0,0,1,1,7},{9,8,0,5,9,4,8,3,3,5,0},{6,4,8,8,9,3,2,7,1,5,8},{4,2,8,5,6,8,9,1,2,9,9},{3,7,1,3,5,7,1,2,9,0,2},{1,4,6,5,4,2,4,6,4,2,0},{9,6,1,8,0,5,9,8,3,5,5},{3,1,5,2,8,9,9,3,2,9,0},{9,5,4,2,3,4,0,9,4,6,3}}}

\end{landscape}
\end{document}

答案3

您不可能在普通文档中获得如此巨大的表格:即使在横向模式和\tiny尺寸下,其超出部分也是 500pt,大约是 17 厘米或 7 英寸。

但是,这里有一个适用于任意数量组件的通用解决方案,这里我给出了四个组件的示例。我还添加了已经讨论过的定义\chisum。空格没有问题。

\documentclass{article}
\usepackage{amsmath}
\usepackage{xparse}
\ExplSyntaxOn
\NewDocumentCommand{\chisum}{m} % a homage to John Wayne
 {
  \aentropy_chisum:n { #1 }
 }
\seq_new:N \l_aentropy_chisum_seq
\int_new:N \l_aentropy_chisum_index_int
\cs_new_protected:Npn \aentropy_chisum:n #1
 {
  \seq_clear:N \l_aentropy_chisum_seq
  \int_zero:N \l_aentropy_chisum_index_int
  \clist_map_inline:nn { #1 }
   {
    \int_incr:N \l_aentropy_chisum_index_int
    \aentropy_add_summand:n { ##1 }
   }
  \seq_use:Nn \l_aentropy_chisum_seq { \oplus }
 }
\cs_new:Npn \aentropy_add_summand:n #1
 {
  \str_if_eq:nnF { #1 } { 0 }
   {
    \seq_put_right:Nx \l_aentropy_chisum_seq
     {
      \str_if_eq:nnF { #1 } { 1 } { #1 }
      \exp_not:n { \chi }
      \c_math_subscript_token
      { \int_to_arabic:n { \l_aentropy_chisum_index_int } }
     }
   }
 }

\NewDocumentCommand{\clebschtable}{mm}
 {
  \aentropy_clebschtable:no { #1 } { #2 }
 }

\tl_new:N \l_aentropy_clebschtable_tl
\int_new:N \l_aentropy_clebschtable_row_int
\cs_new_protected:Npn \aentropy_clebschtable:nn #1 #2
 {
  \tl_clear:N \l_aentropy_clebschtable_tl
  \int_zero:N \l_aentropy_clebschtable_row_int
  \aentropy_make_first_row:n { #1 }
  \clist_map_inline:nn { #2 }
   {
    \int_incr:N \l_aentropy_clebschtable_row_int
    \tl_put_right:Nx \l_aentropy_clebschtable_tl
     {
      \chi
      \c_math_subscript_token
      { \int_to_arabic:n { \l_aentropy_clebschtable_row_int } }
     }
    \clist_map_inline:nn { ##1 }
     {
      \tl_put_right:Nn \l_aentropy_clebschtable_tl { & \aentropy_chisum:n { ####1 } }
     }
    \tl_put_right:Nn \l_aentropy_clebschtable_tl { \\ }
   }
  \begin{array}{l|*{#1}{c}}%| % to keep emacs happy
  \l_aentropy_clebschtable_tl
  \end{array}
 }
\cs_generate_variant:Nn \aentropy_clebschtable:nn { no }
\cs_new_protected:Npn \aentropy_make_first_row:n #1
 {
  \tl_put_right:Nn \l_aentropy_clebschtable_tl { \bigotimes }
  \int_step_inline:nnnn { 1 } { 1 } { #1 }
   {
    \tl_put_right:Nn \l_aentropy_clebschtable_tl
     {
      & \chi
      \c_math_subscript_token
      { ##1 }
     }
   }
  \tl_put_right:Nn \l_aentropy_clebschtable_tl { \\ \hline }
 }
\ExplSyntaxOff

\begin{document}
$\chisum{5,2,7,8,2,0,0,1,3}$

\bigskip

\def\clebschdata {
 {
  {1,0,0,0},
  {0,1,0,0},
  {0,0,1,0},
  {0,2,0,1},
 },
 {
  {0,1,0,0},
  {0,0,1,0},
  {1,0,0,3},
  {0,0,0,1},
 },
 {
  {0,0,1,1},
  {1,0,0,0},
  {0,1,0,0},
  {0,0,3,0},
 },
 {
  {0,0,0,1},
  {4,0,0,1},
  {0,2,0,0},
  {0,0,1,0},
 }
}

$\clebschtable{4}{\clebschdata}$

\end{document}

在此处输入图片描述

仅供参考,以下是 PNG 格式的巨型桌子

在此处输入图片描述


带有换行符;当指定可选参数时,宏假定单元格很大,因此它们\scriptsize按照规定的宽度排版;列和行标题仍然是正常大小。

\documentclass{article}
\usepackage[margin=1cm]{geometry}
\usepackage{amsmath,array,pdflscape}
\newcolumntype{C}[1]{>{\centering\scriptsize\arraybackslash$}m{#1}<{$}}
\usepackage{xparse}
\ExplSyntaxOn
\NewDocumentCommand{\chisum}{m} % a homage to John Wayne
 {
  \aentropy_chisum:n { #1 }
 }
\seq_new:N \l_aentropy_chisum_seq
\int_new:N \l_aentropy_chisum_index_int
\cs_new_protected:Npn \aentropy_chisum:n #1
 {
  \seq_clear:N \l_aentropy_chisum_seq
  \int_zero:N \l_aentropy_chisum_index_int
  \clist_map_inline:nn { #1 }
   {
    \int_incr:N \l_aentropy_chisum_index_int
    \aentropy_add_summand:n { ##1 }
   }
  \seq_use:Nn \l_aentropy_chisum_seq { \oplus }
 }
\cs_new:Npn \aentropy_add_summand:n #1
 {
  \str_if_eq:nnF { #1 } { 0 }
   {
    \seq_put_right:Nx \l_aentropy_chisum_seq
     {
      \str_if_eq:nnF { #1 } { 1 } { #1 }
      \exp_not:n { \chi }
      \c_math_subscript_token
      { \int_to_arabic:n { \l_aentropy_chisum_index_int } }
     }
   }
 }

\NewDocumentCommand{\clebschtable}{omm}
 {
  \IfNoValueTF{#1}
   { \aentropy_clebschtable:nno { } { #2 } { #3 } }
   { \aentropy_clebschtable:nno { #1 } { #2 } { #3 } }
 }

\tl_new:N \l_aentropy_clebschtable_tl
\int_new:N \l_aentropy_clebschtable_row_int
\cs_new_protected:Npn \aentropy_clebschtable:nnn #1 #2 #3
 {
  \tl_clear:N \l_aentropy_clebschtable_tl
  \int_zero:N \l_aentropy_clebschtable_row_int
  \aentropy_make_first_row:n { #2 }
  \clist_map_inline:nn { #3 }
   {
    \int_incr:N \l_aentropy_clebschtable_row_int
    \tl_put_right:Nx \l_aentropy_clebschtable_tl
     {
      \chi
      \c_math_subscript_token
      { \int_to_arabic:n { \l_aentropy_clebschtable_row_int } }
     }
    \clist_map_inline:nn { ##1 }
     {
      \tl_put_right:Nn \l_aentropy_clebschtable_tl { & \aentropy_chisum:n { ####1 } }
     }
    \tl_put_right:Nn \l_aentropy_clebschtable_tl { \\ }
   }
  \tl_if_empty:nTF { #1 }
   { \begin{array}{l|*{#2}{c}} }%| % to keep emacs happy
   { \begin{array}{l|*{#2}{C{#1}}} }%| % to keep emacs happy
  \l_aentropy_clebschtable_tl
  \end{array}
 }
\cs_generate_variant:Nn \aentropy_clebschtable:nnn { nno }
\cs_new_protected:Npn \aentropy_make_first_row:n #1
 {
  \tl_put_right:Nn \l_aentropy_clebschtable_tl { \bigotimes }
  \int_step_inline:nnnn { 1 } { 1 } { #1 }
   {
    \tl_put_right:Nn \l_aentropy_clebschtable_tl
     {
      &
      \multicolumn{1}{c}
       {
        \chi
        \c_math_subscript_token
        { ##1 }
       }
     }
   }
  \tl_put_right:Nn \l_aentropy_clebschtable_tl { \\ \hline }
 }
\ExplSyntaxOff

\begin{document}
% $\chisum{5,2,7,8,2,0,0,1,3}$

% \bigskip

\def\clebschdata {
 {
  {1,0,0,0},
  {0,1,0,0},
  {0,0,1,0},
  {0,2,0,1},
 },
 {
  {0,1,0,0},
  {0,0,1,0},
  {1,0,0,3},
  {0,0,0,1},
 },
 {
  {0,0,1,1},
  {1,0,0,0},
  {0,1,0,0},
  {0,0,3,0},
 },
 {
  {0,0,0,1},
  {4,0,0,1},
  {0,2,0,0},
  {0,0,1,0},
 }
}

$\clebschtable{4}{\clebschdata}$

\def\clebschdata {{{1,0,0,0,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,0,0,0},{0,0,1,0,0,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,0,0},{0,0,0,0,1,0,0,0,0,0,0},{0,0,0,0,0,1,0,0,0,0,0},{0,0,0,0,0,0,1,0,0,0,0},{0,0,0,0,0,0,0,1,0,0,0},{0,0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0,0,0,0,0,1,0},{0,0,0,0,0,0,0,0,0,0,1}},{{0,1,0,0,0,0,0,0,0,0,0},{0,0,1,0,0,1,0,0,0,0,0},{1,0,0,0,0,0,0,0,0,1,0},{0,0,0,0,1,0,0,0,0,0,1},{0,0,0,0,0,0,1,1,0,0,0},{0,0,1,0,0,0,0,0,1,1,0},{0,0,0,1,0,0,1,0,0,0,1},{0,0,0,1,0,0,0,1,0,0,1},{0,0,0,0,0,1,0,0,1,1,0},{0,1,0,0,0,1,0,0,1,1,0},{0,0,0,0,1,0,1,1,0,0,1}},{{0,0,1,0,0,0,0,0,0,0,0},{1,0,0,0,0,0,0,0,0,1,0},{0,1,0,0,0,1,0,0,0,0,0},{0,0,0,0,0,0,1,1,0,0,0},{0,0,0,1,0,0,0,0,0,0,1},{0,1,0,0,0,0,0,0,1,1,0},{0,0,0,0,1,0,1,0,0,0,1},{0,0,0,0,1,0,0,1,0,0,1},{0,0,0,0,0,1,0,0,1,1,0},{0,0,1,0,0,1,0,0,1,1,0},{0,0,0,1,0,0,1,1,0,0,1}},{{0,0,0,1,0,0,0,0,0,0,0},{0,0,0,0,1,0,0,0,0,0,1},{0,0,0,0,0,0,1,1,0,0,0},{0,0,1,0,0,1,0,0,1,0,0},{1,0,0,0,0,0,0,0,1,1,0},{0,0,0,0,1,0,1,1,0,0,1},{0,1,0,0,0,1,0,0,1,1,0},{0,1,0,0,0,1,0,0,1,1,0},{0,0,0,1,1,0,1,1,0,0,1},{0,0,0,1,0,0,1,1,0,0,2},{0,0,1,0,0,1,0,0,1,2,0}},{{0,0,0,0,1,0,0,0,0,0,0},{0,0,0,0,0,0,1,1,0,0,0},{0,0,0,1,0,0,0,0,0,0,1},{1,0,0,0,0,0,0,0,1,1,0},{0,1,0,0,0,1,0,0,1,0,0},{0,0,0,1,0,0,1,1,0,0,1},{0,0,1,0,0,1,0,0,1,1,0},{0,0,1,0,0,1,0,0,1,1,0},{0,0,0,1,1,0,1,1,0,0,1},{0,0,0,0,1,0,1,1,0,0,2},{0,1,0,0,0,1,0,0,1,2,0}},{{0,0,0,0,0,1,0,0,0,0,0},{0,0,1,0,0,0,0,0,1,1,0},{0,1,0,0,0,0,0,0,1,1,0},{0,0,0,0,1,0,1,1,0,0,1},{0,0,0,1,0,0,1,1,0,0,1},{1,0,0,0,0,2,0,0,1,2,0},{0,0,0,1,1,0,1,1,0,0,2},{0,0,0,1,1,0,1,1,0,0,2},{0,1,1,0,0,1,0,0,2,2,0},{0,1,1,0,0,2,0,0,2,2,0},{0,0,0,1,1,0,2,2,0,0,2}},{{0,0,0,0,0,0,1,0,0,0,0},{0,0,0,1,0,0,1,0,0,0,1},{0,0,0,0,1,0,1,0,0,0,1},{0,1,0,0,0,1,0,0,1,1,0},{0,0,1,0,0,1,0,0,1,1,0},{0,0,0,1,1,0,1,1,0,0,2},{1,1,1,0,0,1,0,0,1,2,0},{0,0,0,0,0,1,0,0,2,2,0},{0,0,0,1,1,0,1,2,0,0,2},{0,0,0,1,1,0,2,2,0,0,2},{0,1,1,0,0,2,0,0,2,2,0}},{{0,0,0,0,0,0,0,1,0,0,0},{0,0,0,1,0,0,0,1,0,0,1},{0,0,0,0,1,0,0,1,0,0,1},{0,1,0,0,0,1,0,0,1,1,0},{0,0,1,0,0,1,0,0,1,1,0},{0,0,0,1,1,0,1,1,0,0,2},{0,0,0,0,0,1,0,0,2,2,0},{1,1,1,0,0,1,0,0,1,2,0},{0,0,0,1,1,0,2,1,0,0,2},{0,0,0,1,1,0,2,2,0,0,2},{0,1,1,0,0,2,0,0,2,2,0}},{{0,0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0,1,0,0,1,1,0},{0,0,0,0,0,1,0,0,1,1,0},{0,0,0,1,1,0,1,1,0,0,1},{0,0,0,1,1,0,1,1,0,0,1},{0,1,1,0,0,1,0,0,2,2,0},{0,0,0,1,1,0,1,2,0,0,2},{0,0,0,1,1,0,2,1,0,0,2},{1,1,1,0,0,2,0,0,2,2,0},{0,1,1,0,0,2,0,0,2,3,0},{0,0,0,1,1,0,2,2,0,0,3}},{{0,0,0,0,0,0,0,0,0,1,0},{0,1,0,0,0,1,0,0,1,1,0},{0,0,1,0,0,1,0,0,1,1,0},{0,0,0,1,0,0,1,1,0,0,2},{0,0,0,0,1,0,1,1,0,0,2},{0,1,1,0,0,2,0,0,2,2,0},{0,0,0,1,1,0,2,2,0,0,2},{0,0,0,1,1,0,2,2,0,0,2},{0,1,1,0,0,2,0,0,2,3,0},{1,1,1,0,0,2,0,0,3,3,0},{0,0,0,2,2,0,2,2,0,0,3}},{{0,0,0,0,0,0,0,0,0,0,1},{0,0,0,0,1,0,1,1,0,0,1},{0,0,0,1,0,0,1,1,0,0,1},{0,0,1,0,0,1,0,0,1,2,0},{0,1,0,0,0,1,0,0,1,2,0},{0,0,0,1,1,0,2,2,0,0,2},{0,1,1,0,0,2,0,0,2,2,0},{0,1,1,0,0,2,0,0,2,2,0},{0,0,0,1,1,0,2,2,0,0,3},{0,0,0,2,2,0,2,2,0,0,3},{1,1,1,0,0,2,0,0,3,3,0}}}

\begin{landscape}
\centering
$\clebschtable[1.8cm]{11}{\clebschdata}$
\end{landscape}
\end{document}

在此处输入图片描述

相关内容