支架问题

支架问题
\documentclass{article}
\usepackage{amsmath}
\begin{document
\begin{align*}
    & \frac{1}{2} (1-\varepsilon^2)\left(\partial_\tau \phi\right)^2\\
    & = \frac{1}{2} \left(1-\epsilon ^2\right)\left(
      -\frac{S \epsilon \sin\tau }{\sqrt{\lambda }}
      -\frac{g_2 S^2 \epsilon ^2\sin2\tau }{3 \lambda }\right.\\
    & \quad\left. +\epsilon ^3 \left(-\frac{\left(-\frac{1}{54} g_2^2 S
      \left(32+19 S^2\right) \lambda +Z \left(
      \frac{35 g_2^4}{27}
      -\frac{7 g_2 g_4}{4}+\frac{5 g_5}{8}
      -\frac{g_2^2 \lambda }{6}
      +\frac{\lambda ^2}{24}\right)\right) \sin\tau}
      {\lambda ^{5/2}}\right.\right.\\
    & \quad\left.\left.-\frac{S^3 \left(4 g_2^2-3 \lambda \right) \sin3\tau }
      {24 \lambda ^{3/2}}\right)\right)^2 \\
    & = \frac{S^2 \epsilon ^2 \sin^2\tau }{2 \lambda }+\frac{2 g_2S^3 \epsilon ^3 \cos\tau \sin^2\tau  }{3 \lambda ^{3/2}}  \\
    & \quad +\frac{1}{216 \lambda ^3}S \epsilon ^4 \Bigl( 280 g_2^4 Z-378 g_2 g_4 Z+135 g_5 Z-128 g_2^2 S \lambda  -16 g_2^2 S^3 \lambda \\
    & \quad -36 \text{g2}^2 Z \lambda  -108 S \lambda ^2-27 S^3 \lambda ^2+9 Z \lambda ^2+6 S^3 \left(16 g_2^2-9 \lambda \right) \lambda  \cos2 \tau \Bigr) \sin\tau.
\end{align*}
\end{document}

在上面的代码中我发现了一个与括号不一致的地方。我在下图中标记出来了:

enter image description here

我尝试删除它,但删除后出现错误。你能检查一下吗?

答案1

我的重写。我删除了很多不必要的\left...\right对。另外,我混合了括号。((((对于读者来说,这不是最容易跟踪的。

\documentclass{article}
\usepackage{amsmath,mathtools}
\begin{document}
\begin{align*}
  \MoveEqLeft[3] 
  \tfrac{1}{2} (1-\varepsilon^2)\left(\partial_\tau \phi\right)^2
  \\
  ={} & \frac{1}{2} 
  (1-\epsilon ^2)
  \Biggl[ -\frac{S\epsilon \sin\tau }{\sqrt{\lambda } } 
  -\frac{g_2 S^2 \epsilon^2\sin2\tau }{3 \lambda }
  \\
  &  +\epsilon ^3 
  \Biggl(-\frac{
    \left\{
      -\frac{1}{54}
      g_2^2 S (32+19 S^2) \lambda 
      +Z \left(
        \frac{35 g_2^4}{27} -\frac{7 g_2 g_4}{4}
        +\frac{5g_5}{8} 
        -\frac{g_2^2 \lambda }{6} 
        +\frac{\lambda^2}{24}
      \right)
    \right\}
    \sin\tau} 
  {\lambda ^{5/2}}
  \\
  & -\frac{S^3 (4 g_2^2-3 \lambda)
    \sin3\tau } {24 \lambda ^{3/2}}\Biggr)
  \Biggr]^2
  \\
  ={} & \frac{S^2 \epsilon ^2 \sin^2\tau }{2 \lambda }+\frac{2
    g_2S^3 \epsilon ^3 \cos\tau \sin^2\tau }{3 \lambda ^{3/2}}
  \\
  & +\frac{1}{216 \lambda ^3}S \epsilon ^4 \Bigl( 280 g_2^4
  Z-378 g_2 g_4 Z+135 g_5 Z-128 g_2^2 S \lambda -16 g_2^2 S^3
  \lambda
  \\
  & -36 \text{g2}^2 Z \lambda -108 S \lambda ^2-27 S^3
  \lambda ^2+9 Z \lambda ^2+6 S^3 (16 g_2^2-9 \lambda)
  \lambda \cos2 \tau \Bigr) \sin\tau.
\end{align*}
\end{document}

enter image description here

相关内容