\documentclass{article}
\usepackage{amsmath}
\begin{document}
$These are two truth tables for the following:
$\neg (p \vee q)$ is logically equivalent to $(\neg p) \wedge (\neg q)$
\begin{tabular} {|c|c||c|c||c|c|c|}\hline
$p$ & $q$ & $p \vee q$ & $\neg (p \vee q)$ & $\neg p$ & $\neg q$ & $(\neg p) \wedge (\neg q)$\\ \hline
T & T & T & F & F & F & F\\
T & F & T & F & F & T & F\\
F & T & T & F & T & F & F \\
F & F & F & T & T & T & T\\ \hline
\end{tabular} \vskip .5cm
$\neg (p \implies q)$ is logically equivalent to $p \wedge(\neg q)$
\begin{tabular} {|c|c||c|c||c|c|c|}
\hline
$p$ & $q$ & $(p \implies q)$ & $\neg (p \implies q)$ & $p$ & $\neg q$ & $p \wedge (\neg q)$\\ \hline
T & T & T & F & T & F & F\\
T & F & F & T & T & T & T\\
F & T & T & F & F & F & F\\
F & F & T & F & F & T & F\\ \hline
\end{tabular} \\ \vskip .5cm
$This is some practice using LaTex:
\[
\frac{x^4+5x^3-y}{\cos y-x^2}
\]
\[
\sqrt[\frac{x62}{3}]{\frac{\cos 4}{4.2}}
\]
\end{document}
答案1
$
抑制两条线路的杂散信号
$These are two truth tables for the following:
和
$This is some practice using LaTex:
代码:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
These are two truth tables for the following:
$\neg (p \vee q)$ is logically equivalent to $(\neg p) \wedge (\neg q)$
\begin{tabular} {|c|c||c|c||c|c|c|}\hline
$p$ & $q$ & $p \vee q$ & $\neg (p \vee q)$ & $\neg p$ & $\neg q$ & $(\neg p) \wedge (\neg q)$\\ \hline
T & T & T & F & F & F & F\\
T & F & T & F & F & T & F\\
F & T & T & F & T & F & F \\
F & F & F & T & T & T & T\\ \hline
\end{tabular} \vskip .5cm
$\neg (p \implies q)$ is logically equivalent to $p \wedge(\neg q)$
\begin{tabular} {|c|c||c|c||c|c|c|}
\hline
$p$ & $q$ & $(p \implies q)$ & $\neg (p \implies q)$ & $p$ & $\neg q$ & $p \wedge (\neg q)$\\ \hline
T & T & T & F & T & F & F\\
T & F & F & T & T & T & T\\
F & T & T & F & F & F & F\\
F & F & T & F & F & T & F\\ \hline
\end{tabular} \\ \vskip .5cm
This is some practice using \LaTeX:
\[
\frac{x^4+5x^3-y}{\cos y-x^2}
\]
\[
\sqrt[\frac{x62}{3}]{\frac{\cos 4}{4.2}}
\]
\end{document}
我知道这是一份练习文件,但为了以防万一,在实际文件中必须避免连续显示两个表达式。