我正在尝试使用 fillbetween 来填充两个独立图中两个图形的面积:
我为两种填充设置了相同的域,但它似乎填充了不同的域。(坦率地说,我甚至不确定它的作用)
是我做错了什么还是这是一个错误?
我想说的是,排除geometry
某种方式似乎使得填充更加“准确”(但仍然偏离了数英里)。
\documentclass{article}
\usepackage{pgfplots}
\usepackage{tikz}
\usepackage{geometry} % try commenting this
\usepackage{hyperref}
\usepackage{hypcap}
\pgfplotsset{compat=newest}
\usepgfplotslibrary{fillbetween}
\usetikzlibrary{intersections}
\usetikzlibrary{shadows}
\pgfmathdeclarefunction{normal}{2}{%
\pgfmathparse{1/(#2*sqrt(2*pi))*exp(-((x-#1)^2)/(2*#2^2))}%
}
%
\makeatletter
\pgfmathdeclarefunction{erf}{1}{%
\begingroup
\pgfmathparse{#1 > 0 ? 1 : -1}%
\edef\sign{\pgfmathresult}%
\pgfmathparse{abs(#1)}%
\edef\x{\pgfmathresult}%
\pgfmathparse{1/(1+0.3275911*\x)}%
\edef\t{\pgfmathresult}%
\pgfmathparse{%
1 - (((((1.061405429*\t -1.453152027)*\t) + 1.421413741)*\t
-0.284496736)*\t + 0.254829592)*\t*exp(-(\x*\x))}%
\edef\y{\pgfmathresult}%
\pgfmathparse{(\sign)*\y}%
\pgfmath@smuggleone\pgfmathresult%
\endgroup
}
\pgfmathdeclarefunction{qnorm}{4}{
\begingroup
\pgfkeys{/pgf/fpu,/pgf/fpu/output format=fixed}
\pgfmathparse{#1}
\edef\p{\pgfmathresult}
\pgfmathparse{#2}
\edef\mu{\pgfmathresult}
\pgfmathparse{#3}
\edef\sigma{\pgfmathresult}
%
\pgfmathparse{\sigma < 0 ? 1 : 0}
\edef\sigma@neg{\pgfmathresult}
\pgfmathparse{\sigma == 0 ? 1 : 0}
\edef\sigma@zero{\pgfmathresult}
%
\pgfmathparse{\p - .5}
\edef\q{\pgfmathresult}
%
\pgfmathparse{abs(\q) <= .425 ? 1 : 0}
\edef\q@i{\pgfmathresult}
%
\pgfmathparse{
\q@i ?
.180625 - \q * \q
:
sqrt(-ln(min(\p,(1-\p))))
}
\edef\r@{\pgfmathresult}
%
\pgfmathparse{\q@i ?
\r@
:
(\r@ <= 5 ?
\r@ - 1.6 %
:
\r@ - 5
)}
\edef\r{\pgfmathresult}
\pgfmathparse{\q@i ?
(\q * (((((((\r * 2509.0809287301226727 +
33430.575583588128105) * \r + 67265.770927008700853) * \r +
45921.953931549871457) * \r + 13731.693765509461125) * \r +
1971.5909503065514427) * \r + 133.14166789178437745) * \r +
3.387132872796366608)
/ (((((((\r * 5226.495278852854561 +
28729.085735721942674) * \r + 39307.89580009271061) * \r +
21213.794301586595867) * \r + 5394.1960214247511077) * \r +
687.1870074920579083) * \r + 42.313330701600911252) * \r + 1.))
: ( \r@ <= 5 ?
((((((((\r * 7.7454501427834140764e-4 + %
.0227238449892691845833) * \r + .24178072517745061177) * %
\r + 1.27045825245236838258) * \r + %
3.64784832476320460504) * \r + 5.7694972214606914055) * %
\r + 4.6303378461565452959) * \r + %
1.42343711074968357734) %
/ (((((((\r * %
1.05075007164441684324e-9 + 5.475938084995344946e-4) * %
\r + .0151986665636164571966) * \r + %
.14810397642748007459) * \r + .68976733498510000455) * %
\r + 1.6763848301838038494) * \r + %
2.05319162663775882187) * \r + 1)) %
:
((((((((\r * 2.01033439929228813265e-7 +
2.71155556874348757815e-5) * \r +
.0012426609473880784386) * \r + .026532189526576123093) *
\r + .29656057182850489123) * \r +
1.7848265399172913358) * \r + 5.4637849111641143699) *
\r + 6.6579046435011037772)
/ (((((((\r *
2.04426310338993978564e-15 + 1.4215117583164458887e-7)*
\r + 1.8463183175100546818e-5) * \r +
7.868691311456132591e-4) * \r + .0148753612908506148525)
* \r + .13692988092273580531) * \r +
.59983220655588793769) * \r + 1.))
)
}
\edef\val{\pgfmathresult}
\pgfmathparse{\q@i ? \val :
(\q > 0 ? \val : -\val)} %
\edef\@tmp{\pgfmathresult}
\pgfmathparse{\p > 1 ? sqrt(-1) :
(\p < 0 ? sqrt(-1) :
\sigma@neg ? sqrt(-1) : %
(\sigma@zero ? \mu : %
(#4 ? \mu+\sigma*\@tmp :
\mu-\sigma*\@tmp) %
)
)
}
\pgfmath@smuggleone\pgfmathresult
\endgroup
}
\makeatother
\pgfmathdeclarefunction{skew}{3}{%
\pgfmathparse{(exp(-((x-#1)^2)/(2*(#2)^2))*((erf((#3*(x-#1))/(sqrt(2)*#2)))+1))/(sqrt(2*pi)*#2)}%
}
\begin{document}
\newcommand{\samplesize}{52} % SET sample size globally
\newcommand*\quantile{.95}\relax
\newcommand*\mean{8}\relax
\newcommand*\sd{3.416969}\relax
\newcommand*\lowertail{1}\relax
\pgfmathsetmacro\qqq{qnorm(\quantile,\mean,\sd,\lowertail)}
\begin{figure}[ht]
\capstart
\begin{center}
\begin{tabular}{c}
\begin{tikzpicture}
\begin{axis}[
hide y axis,
axis lines*=center,
axis on top,
no markers,
domain=0:21,
samples=4*\samplesize-7,
xlabel=\empty,
ylabel=\empty,
every axis x label/.style={at=(current axis.right of origin),anchor=west},
every axis y label/.style={at=(current axis.above origin),anchor=south},
width=.8\linewidth,
height=.3\linewidth,
xmin = 0, xmax=21,
xtick=, ytick=\empty,
enlargelimits=false,
clip=false
]
\addplot [name path=normaal,very thick,cyan!85!black!50] {normal(\mean,\sd)};
\path[name path=axis] (axis cs:\pgfkeysvalueof{/pgfplots/xmin},0) -- (axis cs:\pgfkeysvalueof{/pgfplots/xmax},0);
\addplot[red!30,draw=red!80!black] fill between[of=normaal and axis,soft clip={domain=\qqq:\pgfkeysvalueof{/pgfplots/xmax}}];
\end{axis}
\end{tikzpicture} \\
\begin{tikzpicture}
\begin{axis}[
hide y axis,
axis lines*=center,
axis on top,
no markers,
domain=0:21,
samples=4*\samplesize-7,
xlabel=\empty,
ylabel=\empty,
every axis x label/.style={at=(current axis.right of origin),anchor=west},
every axis y label/.style={at=(current axis.above origin),anchor=south},
width=.8\linewidth,
height=.3\linewidth,
xmin = 0, xmax=21,
xtick=, ytick=\empty,
enlargelimits=false,
clip=false
]
\addplot [name path=skew,very thick,green!85!black!50] {skew(19,4,-6)};
\path[name path=axis] (axis cs:\pgfkeysvalueof{/pgfplots/xmin},0) -- (axis cs:\pgfkeysvalueof{/pgfplots/xmax},0);
\addplot[red!30,draw=red!80!black] fill between[of=skew and axis,soft clip={domain=\qqq:\pgfkeysvalueof{/pgfplots/xmax}}];
\end{axis}
\end{tikzpicture}
\end{tabular}
\caption{De statistische power is de kans dat je een effect vindt als het er ook echt is}\label{fig:power}
\end{center}
\end{figure}
\end{document}
答案1
这看起来很像一个错误。
domain
您可以通过不使用该选项来指定来解决该问题soft clip
,而是使用rectangle
如下选项:
soft clip={(axis cs:\qqq,0) rectangle (axis cs:\pgfkeysvalueof{/pgfplots/xmax},\pgfkeysvalueof{/pgfplots/ymax}*1.1)}
注意,矩形的右上角必须高于最大的 y 值,在这种情况下我将其增加了 10%,否则也会出现错误。
\documentclass{article}
\usepackage{pgfplots}
\usepackage{tikz}
\usepackage{geometry} % try commenting this
\usepackage{hyperref}
\usepackage{hypcap}
\pgfplotsset{compat=newest}
\usepgfplotslibrary{fillbetween}
\usetikzlibrary{intersections}
\usetikzlibrary{shadows}
\pgfmathdeclarefunction{normal}{2}{%
\pgfmathparse{1/(#2*sqrt(2*pi))*exp(-((x-#1)^2)/(2*#2^2))}%
}
%
\makeatletter
\pgfmathdeclarefunction{erf}{1}{%
\begingroup
\pgfmathparse{#1 > 0 ? 1 : -1}%
\edef\sign{\pgfmathresult}%
\pgfmathparse{abs(#1)}%
\edef\x{\pgfmathresult}%
\pgfmathparse{1/(1+0.3275911*\x)}%
\edef\t{\pgfmathresult}%
\pgfmathparse{%
1 - (((((1.061405429*\t -1.453152027)*\t) + 1.421413741)*\t
-0.284496736)*\t + 0.254829592)*\t*exp(-(\x*\x))}%
\edef\y{\pgfmathresult}%
\pgfmathparse{(\sign)*\y}%
\pgfmath@smuggleone\pgfmathresult%
\endgroup
}
\pgfmathdeclarefunction{qnorm}{4}{
\begingroup
\pgfkeys{/pgf/fpu,/pgf/fpu/output format=fixed}
\pgfmathparse{#1}
\edef\p{\pgfmathresult}
\pgfmathparse{#2}
\edef\mu{\pgfmathresult}
\pgfmathparse{#3}
\edef\sigma{\pgfmathresult}
%
\pgfmathparse{\sigma < 0 ? 1 : 0}
\edef\sigma@neg{\pgfmathresult}
\pgfmathparse{\sigma == 0 ? 1 : 0}
\edef\sigma@zero{\pgfmathresult}
%
\pgfmathparse{\p - .5}
\edef\q{\pgfmathresult}
%
\pgfmathparse{abs(\q) <= .425 ? 1 : 0}
\edef\q@i{\pgfmathresult}
%
\pgfmathparse{
\q@i ?
.180625 - \q * \q
:
sqrt(-ln(min(\p,(1-\p))))
}
\edef\r@{\pgfmathresult}
%
\pgfmathparse{\q@i ?
\r@
:
(\r@ <= 5 ?
\r@ - 1.6 %
:
\r@ - 5
)}
\edef\r{\pgfmathresult}
\pgfmathparse{\q@i ?
(\q * (((((((\r * 2509.0809287301226727 +
33430.575583588128105) * \r + 67265.770927008700853) * \r +
45921.953931549871457) * \r + 13731.693765509461125) * \r +
1971.5909503065514427) * \r + 133.14166789178437745) * \r +
3.387132872796366608)
/ (((((((\r * 5226.495278852854561 +
28729.085735721942674) * \r + 39307.89580009271061) * \r +
21213.794301586595867) * \r + 5394.1960214247511077) * \r +
687.1870074920579083) * \r + 42.313330701600911252) * \r + 1.))
: ( \r@ <= 5 ?
((((((((\r * 7.7454501427834140764e-4 + %
.0227238449892691845833) * \r + .24178072517745061177) * %
\r + 1.27045825245236838258) * \r + %
3.64784832476320460504) * \r + 5.7694972214606914055) * %
\r + 4.6303378461565452959) * \r + %
1.42343711074968357734) %
/ (((((((\r * %
1.05075007164441684324e-9 + 5.475938084995344946e-4) * %
\r + .0151986665636164571966) * \r + %
.14810397642748007459) * \r + .68976733498510000455) * %
\r + 1.6763848301838038494) * \r + %
2.05319162663775882187) * \r + 1)) %
:
((((((((\r * 2.01033439929228813265e-7 +
2.71155556874348757815e-5) * \r +
.0012426609473880784386) * \r + .026532189526576123093) *
\r + .29656057182850489123) * \r +
1.7848265399172913358) * \r + 5.4637849111641143699) *
\r + 6.6579046435011037772)
/ (((((((\r *
2.04426310338993978564e-15 + 1.4215117583164458887e-7)*
\r + 1.8463183175100546818e-5) * \r +
7.868691311456132591e-4) * \r + .0148753612908506148525)
* \r + .13692988092273580531) * \r +
.59983220655588793769) * \r + 1.))
)
}
\edef\val{\pgfmathresult}
\pgfmathparse{\q@i ? \val :
(\q > 0 ? \val : -\val)} %
\edef\@tmp{\pgfmathresult}
\pgfmathparse{\p > 1 ? sqrt(-1) :
(\p < 0 ? sqrt(-1) :
\sigma@neg ? sqrt(-1) : %
(\sigma@zero ? \mu : %
(#4 ? \mu+\sigma*\@tmp :
\mu-\sigma*\@tmp) %
)
)
}
\pgfmath@smuggleone\pgfmathresult
\endgroup
}
\makeatother
\pgfmathdeclarefunction{skew}{3}{%
\pgfmathparse{(exp(-((x-#1)^2)/(2*(#2)^2))*((erf((#3*(x-#1))/(sqrt(2)*#2)))+1))/(sqrt(2*pi)*#2)}%
}
\begin{document}
\newcommand{\samplesize}{52} % SET sample size globally
\newcommand*\quantile{.95}\relax
\newcommand*\mean{8}\relax
\newcommand*\sd{3.416969}\relax
\newcommand*\lowertail{1}\relax
\pgfmathsetmacro\qqq{qnorm(\quantile,\mean,\sd,\lowertail)}
\begin{figure}[ht]
\capstart
\begin{center}
\begin{tabular}{c}
\begin{tikzpicture}
\begin{axis}[
hide y axis,
axis lines*=center,
axis on top,
no markers,
domain=0:21,
samples=4*\samplesize-7,
xlabel=\empty,
ylabel=\empty,
every axis x label/.style={at=(current axis.right of origin),anchor=west},
every axis y label/.style={at=(current axis.above origin),anchor=south},
width=.8\linewidth,
height=.3\linewidth,
xmin = 0, xmax=21,
xtick=, ytick=\empty,
enlargelimits=false,
clip=false
]
\addplot [name path=normaal,very thick,cyan!85!black!50] {normal(\mean,\sd)};
\path[name path=axis] (axis cs:\pgfkeysvalueof{/pgfplots/xmin},0) -- (axis cs:\pgfkeysvalueof{/pgfplots/xmax},0);
\addplot[red!30,draw=red!80!black] fill between[of=normaal and axis,soft clip={domain=\qqq:\pgfkeysvalueof{/pgfplots/xmax}}];
\end{axis}
\end{tikzpicture} \\
\begin{tikzpicture}
\begin{axis}[
hide y axis,
axis lines*=center,
axis on top,
no markers,
domain=0:21,
samples=4*\samplesize-7,
xlabel=\empty,
ylabel=\empty,
every axis x label/.style={at=(current axis.right of origin),anchor=west},
every axis y label/.style={at=(current axis.above origin),anchor=south},
width=.8\linewidth,
height=.3\linewidth,
xmin = 0, xmax=21,
xtick=, ytick=\empty,
enlargelimits=false,
clip=false
]
\addplot [name path=skew,very thick,green!85!black!50] {skew(19,4,-6)};
\path[name path=axis] (axis cs:\pgfkeysvalueof{/pgfplots/xmin},0) -- (axis cs:\pgfkeysvalueof{/pgfplots/xmax},0);
\addplot[red!30,draw=red!80!black] fill between[of=skew and axis,soft clip={(axis cs:\qqq,0) rectangle (axis cs:\pgfkeysvalueof{/pgfplots/xmax},\pgfkeysvalueof{/pgfplots/ymax}*1.1)}];
\end{axis}
\end{tikzpicture}
\end{tabular}
\caption{De statistische power is de kans dat je een effect vindt als het er ook echt is}\label{fig:power}
\end{center}
\end{figure}
\end{document}