在页面的中间,我有一张长表格,里面有很多数学公式,我想让它自动适合两页。
这里是代码:
\documentclass[11pt, a4paper]{article}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc} %%% new
\usepackage{amsmath,amssymb,amsfonts,amscd}
\usepackage{enumerate}
\usepackage[page]{appendix}
\usepackage{wasysym}
\usepackage{amsfonts,bbm}
\usepackage[retainorgcmds]{IEEEtrantools}
\usepackage{amsthm}
\usepackage{supertabular} % tableaux qui tiennent sur plusieurs pages
%\usepackage{epsfig}
\usepackage{mathrsfs}
\usepackage{amsfonts}
\usepackage[T1]{fontenc}
\usepackage[french]{babel}
\usepackage{amssymb}
\def\ds{\displaystyle}
\usepackage{latexsym}
\usepackage{amsfonts}
\usepackage{syntonly}
\usepackage{tracefnt}
\usepackage{amsmath}
%\addtolength{\textwidth}{1.6cm}
\usepackage{fancyhdr}
\usepackage{graphicx}
\usepackage{setspace} % permet de définir l'interligne
\usepackage{a4wide}
%%\usepackage{xtab} %% commented out because loading this package causes an error
%\textheight 22.5cm \textwidth 15.8cm
\usepackage{geometry}
\geometry{hmargin=3cm,vmargin=3cm}
%%%%%%%%%%%%%%% LYX's packages
\usepackage{float}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{esint}
\PassOptionsToPackage{normalem}{ulem}
\usepackage{ulem}
%%%%%%%%%%%%%%%%
\newcommand{\bea}{\begin{eqnarray*}}
\newcommand{\eea}{\end{eqnarray*}}
\newcommand{\cc}{\mathcal}
\newcommand{\bb}{\mathbb}
\newcommand{\bacc}{\left\{}
\newcommand{\eacc}{\right\}}
\newcommand{\evacc}{\right.}
\newcommand{\bp}{\left(}
\newcommand{\ep}{\right)}
\newcommand{\bint}{\left[}
\newcommand{\eint}{\right]}
%\newcommand{\bea}{\begin{eqnarray*}}
%\newcommand{\eea}{\end{eqnarray*}}
\newcommand{\bnorme}{\left\|}
\newcommand{\enorme}{\right\|}
\newcommand{\babsolu}{\left|}
\newcommand{\eabsolu}{\right|}
\newcommand{\ba}{\begin{array}}
\newcommand{\ea}{\end{array}}
\newcommand{\bdes}{\begin{description}}
\newcommand{\edes}{\end{description}}
\newcommand{\benu}{\begin{enumerate}}
\newcommand{\eenu}{\end{enumerate}}
\newcommand{\implique}{\Rightarrow}
\newcommand{\ssi}{\Leftrightarrow}
\newcommand{\associe}{\mapsto}
\newcommand{\avaleur}{\rightarrow}
\newcommand{\rn}{$\mathbb{R}^N$}
\newcommand{\sla}{\textbackslash}
%\newcommand{\pp}{\textit{Preuve.}}
\newcommand{\bdisp}{\begin{displaymath}}
\newcommand{\edisp}{\begin{displaymath}}
\newcommand{\bsplit}{\begin{split}}
\newcommand{\esplit}{\end{split}}
\newcommand{\petit}{\footnotesize}
\newtheorem{deff}{Définition}[section]
\newtheorem{lem}[deff]{Lemme}
\newtheorem{prop}[deff]{Proposition}
\newtheorem{thm}[deff]{Théorème}
\newtheorem{coro}[deff]{Corollaire}
\newtheorem{rmq}[deff]{Remarque}
\newcommand{\pre}{{\textit{\petit{{\textbf{Démonstration. }}}}}}
\newcommand{\p}{\mathbb{P}}
\newcommand{\pp}{\mathbb{P}^{'}}
\newcommand{\ppp}{\mathbb{P}^{''}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\BB}{\mathscr{B}}
\newcommand{\KK}{\mathscr{K}}
\newcommand{\CC}{\mathcal{C}}
\newcommand{\X}{\mathsf{X}}
\newcommand{\YY}{\mathsf{Y}}
\newcommand{\HH}{\mathsf{H}}
\newcommand{\XX}{\mathsf{X}}
\newcommand{\NN}{\mathsf{N}}
\newcommand{\RR}{\mathsf{R}}
\newcommand{\EE}{\mathsf{E}}
\newcommand{\FF}{\mathsf{F}}
\newcommand{\MM}{\mathsf{M}}
\newcommand*{\defeq}{\mathrel{\vcenter{\baselineskip0.5ex \lineskiplimit0pt
\hbox{\scriptsize.}\hbox{\scriptsize.}}}% definie le symbole :=
=}
\begin{document} %%% new
{\textbf{fonctions de référence}}
$$\begin{array}{ll}
\displaystyle{\tau(n)=\mbox{card\,}\bacc p\, /\, p\mbox{ divise }n\eacc}
& \displaystyle{\mu(n)=\bacc\ba{ccc}0&\mbox{ si }
&n\not\in \pp\\ (-1)^{\tau(n)}
&\mbox{ si }&n\in \pp\ea\right.} \mbox{\petit{(fonction de Möbius)}}\\\\
\displaystyle{{\delta(n)=\sum_{k/n}\mu(k)}}
&\Lambda (n)=\bacc\ba{ccc}0
&\mbox{ si }
&n\not\in \ppp\\
\log(p)
&\mbox{ si }
&n= \p^\nu\ea\right.\mbox{\petit{(fonction de Mangoldt)}}\\\\
\displaystyle{b(n)=\sum_{kl=n}\Lambda(k)\,\Lambda (l)-\Lambda(n)\log(n)}
&\displaystyle{c(n)=\sum_{kl=n}\Lambda(k)\,\Lambda (l)+\Lambda(n)\log(n)}\\\\
\displaystyle{[x]=\sum_{k\leq x}1} (\petit{\mbox{partie entière de }} $x$)
& \beta(x)=x-[x] (\petit{\mbox {partie fractionnaire de }} x)\\
\ &\ \\
\pi(x)=\mbox{card}\bacc p\in\p\,/\, p\leq x\eacc&\pi'(x)=\mbox{card}\bacc p'\in\pp\,/\, p'\leq x\eacc\\
\ &\ \\
U(x)=\displaystyle{\sum_{k\leq x}\frac{x}{k}}&M(x)=\displaystyle{\sum_{k\leq x} \mu(k)} \mbox{\petit{(fonction de Mertens)}}\\
\ &\ \\
V(x)=\displaystyle{\sum_{k\leq x}\frac{x}{k}\log\bp\frac{x}{k}\ep}& \varphi(x)=\babsolu M(x)\eabsolu \log^2 x-2x\log x\\
\ &\ \\
\sigma(x)=\displaystyle{\sup_{t\geq x}\babsolu \frac{M(t)}{t}\eabsolu}& \nu_p(x)=\bint \frac{\log (x)}{\log (p)}\eint=\bacc\ba{ccc}0&\mbox{ si }&p>x\\
\max\bacc \nu/\ p^\nu\leq x\eacc&\mbox{ si }&p\leq x\ea\right.\\
\ &\ \\
\theta(x)=\displaystyle{\sum_{p\leq x}\log(p)}&\Psi(x)=\displaystyle{\sum_{p\leq x}\nu_p(x)\log(p)}=\displaystyle{\sum_{n\leq x}\Lambda (n)}\mbox{\petit{ (f. de Tchebychev)}}
\end{array}$$
\end{document} %%% new
答案1
如果我正确理解了您的设置,您实际上并不是想按照 LaTeX 的通常含义创建一个table
(或,等等)。相反,您要创建一个更长的未编号方程列表,每行两个。如果这种解释正确,您可以使用一个环境,其中三个对齐点用 标记。指令位于 之前,允许在每行后换行。supertabular
align*
&
\allowdisplaybreaks
\begin{align*}
我忍不住要评论以下事实:(a) 您的序言中有很多重复的说明,其中几个包被加载了三次甚至四次,以及 (b) 您创建的许多与数学相关的快捷方式并没有显著减少您需要输入的内容。清理这种情况不仅有利于美观,而且还会提高您对文档内容的理解。
\documentclass[11pt, a4paper]{article}
\usepackage{lmodern}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{amsmath,amssymb,amsfonts,amscd,amsthm}
\usepackage{enumerate}
\usepackage[page]{appendix}
\usepackage{wasysym}
\usepackage{bbm}
\usepackage[retainorgcmds]{IEEEtrantools}
\usepackage{supertabular} % tableaux qui tiennent sur plusieurs pages
%\usepackage{epsfig}
\usepackage{mathrsfs}
%%\usepackage{amsfonts}
%%\usepackage[T1]{fontenc}
\usepackage[french]{babel}
%%\usepackage{amssymb}
\def\ds{}
\usepackage{latexsym}
%%\usepackage{amsfonts}
\usepackage{syntonly}
\usepackage{tracefnt}
%%\usepackage{amsmath}
%\addtolength{\textwidth}{1.6cm}
\usepackage{fancyhdr}
\usepackage{graphicx}
\usepackage{setspace} % permet de définir l'interligne
\usepackage{a4wide}
%\usepackage{xtab}
%\textheight 22.5cm \textwidth 15.8cm
\usepackage{geometry}
\geometry{hmargin=3cm,vmargin=3cm}
%%%%%%%%%%%%%%% LYX's packages
\usepackage{float}
%%%\usepackage{amsmath}
%%%\usepackage{amssymb}
\usepackage{esint}
\PassOptionsToPackage{normalem}{ulem}
\usepackage{ulem}
%%%%%%%%%%%%%%%%
\newcommand{\bea}{\begin{eqnarray*}}
\newcommand{\eea}{\end{eqnarray*}}
\newcommand{\cc}{\mathcal}
\newcommand{\bb}{\mathbb}
\newcommand{\evacc}{\right.}
\newcommand{\bp}{\left(}
\newcommand{\ep}{\right)}
\newcommand{\bint}{\left[}
\newcommand{\eint}{\right]}
%\newcommand{\bea}{\begin{eqnarray*}}
%\newcommand{\eea}{\end{eqnarray*}}
\newcommand{\bnorme}{\left\|}
\newcommand{\enorme}{\right\|}
\newcommand{\babsolu}{\left|}
\newcommand{\eabsolu}{\right|}
\newcommand{\ba}{\begin{array}}
\newcommand{\ea}{\end{array}}
\newcommand{\bdes}{\begin{description}}
\newcommand{\edes}{\end{description}}
\newcommand{\benu}{\begin{enumerate}}
\newcommand{\eenu}{\end{enumerate}}
\newcommand{\implique}{\Rightarrow}
\newcommand{\ssi}{\Leftrightarrow}
\newcommand{\associe}{\mapsto}
\newcommand{\avaleur}{\rightarrow}
\newcommand{\rn}{$\mathbb{R}^N$}
\newcommand{\sla}{\textbackslash}
%\newcommand{\pp}{\textit{Preuve.}}
\newcommand{\bdisp}{\begin{displaymath}}
\newcommand{\edisp}{\begin{displaymath}}
\newcommand{\bsplit}{\begin{split}}
\newcommand{\esplit}{\end{split}}
\newcommand{\petit}{\footnotesize}
\newtheorem{deff}{Définition}[section]
\newtheorem{lem}[deff]{Lemme}
\newtheorem{prop}[deff]{Proposition}
\newtheorem{thm}[deff]{Théorème}
\newtheorem{coro}[deff]{Corollaire}
\newtheorem{rmq}[deff]{Remarque}
\newcommand{\pre}{{\textit{\petit{{\textbf{Démonstration. }}}}}}
\newcommand{\p}{\mathbb{P}}
\newcommand{\pp}{\mathbb{P}^{'}}
\newcommand{\ppp}{\mathbb{P}^{''}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\BB}{\mathscr{B}}
\newcommand{\KK}{\mathscr{K}}
\newcommand{\CC}{\mathcal{C}}
\newcommand{\X}{\mathsf{X}}
\newcommand{\YY}{\mathsf{Y}}
\newcommand{\HH}{\mathsf{H}}
\newcommand{\XX}{\mathsf{X}}
\newcommand{\NN}{\mathsf{N}}
\newcommand{\RR}{\mathsf{R}}
\newcommand{\EE}{\mathsf{E}}
\newcommand{\FF}{\mathsf{F}}
\newcommand{\MM}{\mathsf{M}}
\newcommand*{\defeq}{\mathrel{\vcenter{\baselineskip0.5ex \lineskiplimit0pt
\hbox{\scriptsize.}\hbox{\scriptsize.}}}% definie le symbole :&=
&=}
\begin{document}
\noindent
\textbf{Fonctions de référence}
\allowdisplaybreaks
\begin{align*}
\tau(n)&=\mbox{card\,}\{\, p\mid \text{$p$ divise $n$}\,\}
&
\mu(n)&=\begin{cases}0&\text{si $n\not\in \pp$}\\ (-1)^{\tau(n)} &\text{si $n\in \pp$}\end{cases} \mbox{ \petit(fonction de Möbius)}\\[1\baselineskip]
\delta(n)&=\sum_{k/n}\mu(k)
&
\Lambda (n)&=
\begin{cases}
0 &\text{si $n\not\in \ppp$}\\
\log(p) &\text{si $n= \p^\nu$}
\end{cases}
\mbox{ \petit{(fonction de Mangoldt)}}\\[1\baselineskip]
b(n)&=\sum_{kl=n}\Lambda(k)\,\Lambda (l) -\Lambda(n)\log(n)
&
c(n)&=\sum_{kl=n}\Lambda(k)\,\Lambda (l)+\Lambda(n)\log(n)\\[1\baselineskip]
[x]&=\sum_{k\leq x}1\text{ \petit(partie entière de $x$)}
&
\beta(x)&=x-[x] \text{ \petit(partie fractionnaire de $x$)}\\[1\baselineskip]
\pi(x)&=\mbox{card}\{\, p\in\p\mid p\leq x\,\}
&
\pi'(x)&=\mbox{card}\{\, p'\in\pp\mid p'\leq x \,\} \\[1\baselineskip]
U(x)&={\sum_{k\leq x}\frac{x}{k}}
&
M(x)&={\sum_{k\leq x} \mu(k)} \mbox{ \petit{(fonction de Mertens)}}\\[1\baselineskip]
V(x)&=\sum_{k\leq x}\frac{x}{k}\log\bp\frac{x}{k}\ep
&
\varphi(x)&=\babsolu M(x)\eabsolu \log^2 x-2x\log x\\[1\baselineskip]
\sigma(x)&={\sup_{t\geq x}\babsolu \frac{M(t)}{t}\eabsolu}
&
\nu_p(x)&=\bint \frac{\log (x)}{\log (p)}\eint=
\begin{cases}
0 &\text{ si $p>x$}\\
\max\{\, \nu\mid p^\nu\leq x \,\}&\text{ si $p\leq x$}
\end{cases}\\[1\baselineskip]
\theta(x)&=\sum_{p\leq x}\log(p)
&
\Psi(x)&=\sum_{p\leq x}\nu_p(x)\log(p)=
\sum_{n\leq x}\Lambda (n)\mbox{ \petit(f. de Tchebychev)}
\end{align*}
\end{document}
答案2
我稍微整理了一下代码,并允许它使用环境来打破页面align*
。请参阅代码中的注释。
\documentclass[11pt, a4paper]{article}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc} %%% new
\usepackage{amsmath,amssymb,amsfonts,amscd}
\usepackage{enumerate}
\usepackage[page]{appendix}
\usepackage{wasysym}
\usepackage{
%already loaded amsfonts
,bbm}
\usepackage[retainorgcmds]{IEEEtrantools}
\usepackage{amsthm}
\usepackage{supertabular} % tableaux qui tiennent sur plusieurs pages
%\usepackage{epsfig} no!
\usepackage{mathrsfs}
%already loaded \usepackage{amsfonts}
%already loaded \usepackage[T1]{fontenc}
\usepackage[french]{babel}
%already loaded \usepackage{amssymb}
\def\ds{\displaystyle}
% no \usepackage{latexsym}
%already loaded \usepackage{amsfonts}
% \usepackage{syntonly}no:-)
% \usepackage{tracefnt}
%already loaded \usepackage{amsmath}
%\addtolength{\textwidth}{1.6cm}
\usepackage{fancyhdr}
\usepackage{graphicx}
\usepackage{setspace} % permet de définir l'interligne
% no use geometry, as you do below \usepackage{a4wide}
%%\usepackage{xtab} %% commented out because loading this package causes an error
%\textheight 22.5cm \textwidth 15.8cm
\usepackage{geometry}
\geometry{hmargin=3cm,vmargin=3cm}
%%%%%%%%%%%%%%% LYX's packages
\usepackage{float}
%already loaded \usepackage{amsmath}
%already loaded \usepackage{amssymb}
\usepackage{esint}
% \PassOptionsToPackage{normalem}{ulem}
% \usepackage{ulem}
\usepackage[normalem]{ulem}%simpler
%%%%%%%%%%%%%%%%
%don't do this!!!!!
% It's bad style and doesn't work at all with ams alignments
% use environment syntax
% \newcommand{\bea}{\begin{eqnarray*}}
%\newcommand{\eea}{\end{eqnarray*}}
\newcommand{\cc}{\mathcal}
\newcommand{\bb}{\mathbb}
\newcommand{\bacc}{\left\{}
\newcommand{\eacc}{\right\}}
\newcommand{\evacc}{\right.}
\newcommand{\bp}{\left(}
\newcommand{\ep}{\right)}
\newcommand{\bint}{\left[}
\newcommand{\eint}{\right]}
%\newcommand{\bea}{\begin{eqnarray*}}
%\newcommand{\eea}{\end{eqnarray*}}
\newcommand{\bnorme}{\left\|}
\newcommand{\enorme}{\right\|}
\newcommand{\babsolu}{\left|}
\newcommand{\eabsolu}{\right|}
%\newcommand{\ba}{\begin{array}}
%\newcommand{\ea}{\end{array}}
%\newcommand{\bdes}{\begin{description}}
%\newcommand{\edes}{\end{description}}
%\newcommand{\benu}{\begin{enumerate}}
%\newcommand{\eenu}{\end{enumerate}}
\newcommand{\implique}{\Rightarrow}
\newcommand{\ssi}{\Leftrightarrow}
\newcommand{\associe}{\mapsto}
\newcommand{\avaleur}{\rightarrow}
\newcommand{\rn}{$\mathbb{R}^N$}
\newcommand{\sla}{\textbackslash}
%\newcommand{\pp}{\textit{Preuve.}}
%\newcommand{\bdisp}{\begin{displaymath}}
%\newcommand{\edisp}{\begin{displaymath}}
%\newcommand{\bsplit}{\begin{split}}
%\newcommand{\esplit}{\end{split}}
\newcommand{\petit}{\footnotesize} % this does _not_ take an argument
\newtheorem{deff}{Définition}[section]
\newtheorem{lem}[deff]{Lemme}
\newtheorem{prop}[deff]{Proposition}
\newtheorem{thm}[deff]{Théorème}
\newtheorem{coro}[deff]{Corollaire}
\newtheorem{rmq}[deff]{Remarque}
\newcommand{\pre}{{\textit{\petit{{\textbf{Démonstration. }}}}}}
\newcommand{\p}{\mathbb{P}}
\newcommand{\pp}{\mathbb{P}^{'}}
\newcommand{\ppp}{\mathbb{P}^{''}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\BB}{\mathscr{B}}
\newcommand{\KK}{\mathscr{K}}
\newcommand{\CC}{\mathcal{C}}
\newcommand{\X}{\mathsf{X}}
\newcommand{\YY}{\mathsf{Y}}
\newcommand{\HH}{\mathsf{H}}
\newcommand{\XX}{\mathsf{X}}
\newcommand{\NN}{\mathsf{N}}
\newcommand{\RR}{\mathsf{R}}
\newcommand{\EE}{\mathsf{E}}
\newcommand{\FF}{\mathsf{F}}
\newcommand{\MM}{\mathsf{M}}
\newcommand*{\defeq}{\mathrel{\vcenter{\baselineskip0.5ex \lineskiplimit0pt
\hbox{\scriptsize.}\hbox{\scriptsize.}}}% definie le symbole :=
=}
\begin{document} %%% new
xxxxx
\vspace{12cm}
xxxxxx
\section*{fonctions de référence}% avoid explict font changes
\allowdisplaybreaks
\begin{align*}
{\tau(n)=\mbox{card\,}\bacc p\, /\, p\mbox{ divise }n\eacc}
& {\mu(n)=\bacc\begin{array}{ccc}0&\mbox{ si }
&n\not\in \pp\\ (-1)^{\tau(n)}
&\mbox{ si }&n\in \pp\end{array}\right.} \mbox{\petit(fonction de Möbius)}\\
{{\delta(n)=\sum_{k/n}\mu(k)}}
&\Lambda (n)=\bacc\begin{array}{ccc}0
&\mbox{ si }
&n\not\in \ppp\\
\log(p)
&\mbox{ si }
&n= \p^\nu\end{array}\right.\mbox{\petit (fonction de Mangoldt)}\\
{b(n)=\sum_{kl=n}\Lambda(k)\,\Lambda (l)-\Lambda(n)\log(n)}
&{c(n)=\sum_{kl=n}\Lambda(k)\,\Lambda (l)+\Lambda(n)\log(n)}\\
{[x]=\sum_{k\leq x}1} (\mbox{\petit partie entière de} x)
& \beta(x)=x-[x] (\mbox {\petit partie fractionnaire de } x)\\
\pi(x)=\mbox{card}\bacc p\in\p\,/\, p\leq x\eacc&\pi'(x)=\mbox{card}\bacc p'\in\pp\,/\, p'\leq x\eacc\\
U(x)={\sum_{k\leq x}\frac{x}{k}}&M(x)={\sum_{k\leq x} \mu(k)} \mbox{\petit (fonction de Mertens)}\\
V(x)={\sum_{k\leq x}\frac{x}{k}\log\bp\frac{x}{k}\ep}& \varphi(x)=\babsolu M(x)\eabsolu \log^2 x-2x\log x\\[10pt]
\sigma(x)={\sup_{t\geq x}\babsolu \frac{M(t)}{t}\eabsolu}& \nu_p(x)=\bint \frac{\log (x)}{\log (p)}\eint=\bacc\begin{array}{ccc}0&\mbox{ si }&p>x\\[10pt]
\max\bacc \nu/\ p^\nu\leq x\eacc&\mbox{ si }&p\leq x\end{array}\right.\\[10pt]
\theta(x)={\sum_{p\leq x}\log(p)}&\Psi(x)={\sum_{p\leq x}\nu_p(x)\log(p)}={\sum_{n\leq x}\Lambda (n)}\mbox{\petit (f. de Tchebychev)}
\end{align*}
\end{document} %%% new