如何使用如图所示的枚举数组
答案1
使用tasks
包(曾经是的一部分exsheets
,但已成为一个独立的包),你可以获得与图片非常接近的东西:
\documentclass[twoside, a4paper]{report}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{microtype}
\usepackage[x11names]{xcolor}
\colorlet{rulecolour}{CadetBlue2}
\usepackage{fourier}
\usepackage{mathtools}
\DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
\usepackage{etoolbox}
\usepackage[italic]{esdiff}
\newcommand\der{\diff{\hphantom{x}}{x}}
\usepackage[condensed]{cabin}
\usepackage[margin = 2.25cm, noheadfoot, nomarginpar]{geometry}
\usepackage{tasks}
\settasks{counter-format = tsk[1]., label-offset =0.6667em, label-align = right, item-indent = 1.5em}%
\pagestyle{plain}
\usepackage[explicit]{titlesec}
%
\titleformat{name=\section}[hang]{\sffamily\bfseries\large}{\thesection}{1em}{\lsstyle\MakeUppercase{#1}}[{\color{rulecolour}\titlerule[1.2pt]}]%
\titleformat{name=\section, numberless}[hang]{\sffamily\bfseries\large}{}{0em}{\lsstyle\enspace \MakeUppercase{#1}}[{\color{rulecolour}\titlerule[1.2pt]}]%
\titlespacing*{\section}{0em}{2\baselineskip}{1.5\baselineskip}
\titleformat{name=\subsection}[hang]{\sffamily\bfseries}{\thesection}{1em}{\lsstyle\color{rulecolour}#1}
\titleformat{name=\subsection, numberless}[hang]{\sffamily\bfseries}{}{0em}{\lsstyle\color{rulecolour}#1}
\titlespacing*{\subsection}{0em}{1.5\baselineskip}{.5\baselineskip}
\newcommand\explan[1]{\quad\footnotesize(#1)}
\begin{document}
\section*{Differentiation rules}
\subsection*{General formulas}
\begin{tasks}(2)
\task $ \der(c) = 0 $
\task $ \der\bigl[cf(x)\bigr]= c f'(x) $
\task $ \der\bigl[f(x) + g(x)\bigr]= f'(x) + g'(x)$
\task $ \der\bigl[f(x) - g(x)\bigr]= f'(x) - g'(x)$
\task $ \der\bigl[f(x)g(x)\bigr]= f'(x)g(x) + f(x)g'(x)$\explan{Product Rule}
\task $ \der\biggl[\frac{f(x)}{g(x)}\biggr]= \frac{f'(x)g(x) - f(x)g'(x)}{\bigl[g(x)\bigr]^{2}} $\explan{Quotient Rule}
\task $ \der\bigl[f(g(x))\bigr]'= f'(g(x))g'(x) $\explan{Chain Rule}
\task $ \der\bigl[xⁿ\bigr]= n x^{n-1} $ \explan{Power Rule}
\end{tasks}
\subsection*{Exponential and Logarithmic Functions}
\begin{tasks}[resume](2)
\task $ \der\bigl(e^{x}\bigr) = e^{x} $
\task $ \der\bigl(a^{x}\bigr) = a^{x}\ln a$
\task $ \der\ln\abs[\big]{ x}= \frac{1}{x}$
\task $ \der\bigl(\log_a\abs[\big]{x}\bigr) = \frac{1}{x \ln a}$
\end{tasks}
\subsection*{Trigonometric Functions}
\begin{tasks}[resume](3)
\task $ \der(\sin x) = \cos x $
\task $ \der(\cos x) = -\sin x $
\task $ \der(\tan x) = \sec^{2}x $
\task $ \der(\csc x) = -\csc x \cot x $
\task $ \der(\sec x)= \sec x \tan x $
\task $ \der(\cot x) = -\csc^{2} x $
\end{tasks}
\end{document}