xtab 对齐问题

xtab 对齐问题
\documentclass[12pt,a4paper]{article}

\usepackage{amsmath}

\usepackage{xtab}       % table page breaks
\usepackage{array}      % for advanced column specification: use >{\command} for
                        % commands executed right before each column element
                        % and <{\command} for commands to be executed right after
                        % each column element

\usepackage{booktabs} % toprule, bottomrule, midrule


\begin{document}


\renewcommand{\arraystretch}{1.5}
\begin{xtabular}{>{$}l<{$} c c}

    \toprule
    \text{Model} & \text{AIC (logistic link)} & \text{AIC (linear link)} \\
    \midrule
        \{ \phi(\cdot)  ,  p(\cdot) \}         & 986   & 986 \\
        \{ \phi(\cdot)  ,  p(t) \}             & 993   & 993 \\
        \{ \phi(\cdot)  ,  p(h_2) \}           & 961   & 959 \\
        \{ \phi(\cdot)  ,  p(h_3) \}           & 948   & 948 \\
        \{ \phi(\cdot)  ,  p(h_4) \}           & 952   & 952 \\
        \{ \phi(\cdot)  ,  p(t+h_2) \}         & 969   & 977 \\
        \{ \phi(\cdot)  ,  p(t+h_3) \}         & 949   & 981 \\
        \{ \phi(\cdot)  ,  p(t+h_4) \}         & 953   & 999 \\
        \{ \phi(\cdot)  ,  p(t \times h_2) \}  & 970   & 1032 \\
        \{ \phi(\cdot)  ,  p(t \times h_3) \}  & 979   & 1131 \\
        \{ \phi(\cdot)  ,  p(t \times h_4) \}  & 993   & 1124 \\
        \{ \phi(t)  ,  p(\cdot) \}  &       & 994 \\
        \{ \phi(t)  ,  p(t) \}      &       & 996 \\
        \{ \phi(t)  ,  p(h_2) \}    & 963   & 963 \\
        \{ \phi(t)  ,  p(h_3) \}    & 952   & 952 \\
        \{ \phi(t)  ,  p(h_4) \}    & 956   & 956 \\
        \{ \phi(t)  ,  p(t+h_2) \}  & 973   & 976 \\
        \{ \phi(t)  ,  p(t+h_3) \}  & 954   & 968 \\
        \{ \phi(t)  ,  p(t+h_4) \}  & 958   & 975 \\
        \{ \phi(t)  ,  p(t \times h_2) \}  &       & 1018 \\
        \{ \phi(t)  ,  p(t \times h_3) \}  & 976   & 1165 \\
        \{ \phi(t)  ,  p(t \times h_4) \}  & 999   & 1167 \\
        \{ \phi(h_2)  ,  p(\cdot) \}  & 968   & 968 \\
        \{ \phi(h_3)  ,  p(\cdot) \}  & 972   & 972 \\
        \{ \phi(h_4)  ,  p(\cdot) \}  & 976   & 976 \\
        \{ \phi(h_2)  ,  p(t) \}      &       & 971 \\
        \{ \phi(h_3)  ,  p(t) \}      & 975   & 1055 \\
        \{ \phi(h_4)  ,  p(t) \}      & 979   & 979 \\
        \{ [\phi(h)  ,  p(h)]_2 \}           & 970   & 959 \\
        \{ [\phi(h)  ,  p(h)]_3 \}           & 951   & 951 \\
        \{ [\phi(h)  ,  p(h)]_4 \}           & 957   & 957 \\
        \{ [\phi(h)  ,  p(t+h)]_2 \}         & 967   & 972 \\
        \{ [\phi(h)  ,  p(t+h)]_3 \}         & 957   & 969 \\
        \{ [\phi(h)  ,  p(t+h)]_4 \}         & 959   & 976 \\
        \{ [\phi(h)  ,  p(t \times h)]_2 \}  & 987   & 993 \\
        \{ [\phi(h)  ,  p(t \times h)]_3 \}  & 978   & 1047 \\
        \{ [\phi(h)  ,  p(t \times h)]_4 \}  & 993   & 1063 \\
        \{ \phi(t+h_2)  ,  p(\cdot) \}       & 982   & 987 \\
        \{ \phi(t+h_3)  ,  p(\cdot) \}       & 977   & 983 \\
        \{ \phi(t+h_4)  ,  p(\cdot) \}       &       & 987 \\
        \{ \phi(t+h_2)  ,  p(t) \}           & 977   & 982 \\
        \{ \phi(t+h_3)  ,  p(t) \}           & 980   & 987 \\
        \{ \phi(t+h_4)  ,  p(t) \}           & 985   & 992 \\
        \{ [\phi(t+h)  ,  p(h)]_2 \}            & 965   & 967 \\
        \{ [\phi(t+h)  ,  p(h)]_3 \}            & 956   & 959 \\
        \{ [\phi(t+h)  ,  p(h)]_4 \}            & 962   & 966 \\
        \{ [\phi(t+h)  ,  p(t+h)]_2 \}          & 965   & 984 \\
        \{ [\phi(t+h)  ,  p(t+h)]_3 \}          & 959   & 1000 \\
        \{ [\phi(t+h)  ,  p(t+h)]_4 \}          & 965   & 1009 \\
        \{ [\phi(t+h)  ,  p(t \times h)]_2 \}   & 981   & 1043 \\
        \{ [\phi(t+h)  ,  p(t \times h)]_3 \}   & 987   & 1185 \\
        \{ [\phi(t+h)  ,  p(t \times h)]_4 \}   & 994   & 1080 \\
        \{ \phi(t \times h_2)  ,   p(\cdot) \}  & 978   & 991 \\
        \{ \phi(t \times h_3)  ,   p(\cdot) \}  & 993   & 1045 \\
        \{ \phi(t \times h_4)  ,   p(\cdot) \}  & 1012  & 1023 \\
        \{ [\phi(t \times h)  ,   p(h)]_2 \}    & 970   & 974 \\
        \{ [\phi(t \times h)  ,   p(h)]_3 \}    & 1000  & 990 \\
        \{ [\phi(t \times h)  ,   p(h)]_4 \}    & 1003  & 1000 \\
    \bottomrule
    \topcaption{AIC values}

\end{xtabular}


\end{document}

如果您查看第 2 页和第 3 页的输出,列宽会比第 1 页的列宽小。我的意思是第 2 页和第 3 页的表格被视为具有“标题”的单独表格。

有没有什么办法可以改善这种情况?

为什么会在那些点处断开?显然,我们在第一页和第二页上放了更多行。

顶部标题在哪里???

谢谢!

答案1

因为这就longtable足够了。

\documentclass[12pt,a4paper]{article}
\usepackage[showframe]{geometry}
\usepackage{amsmath}

\usepackage{longtable}       % table page breaks
\usepackage{array}      % for advanced column specification: use >{\command} for
                        % commands executed right before each column element
                        % and <{\command} for commands to be executed right after
                        % each column element

\usepackage{booktabs} % toprule, bottomrule, midrule


\begin{document}


\renewcommand{\arraystretch}{1.5}

\begin{longtable}{>{$}l<{$} c c}
  \caption{AIC values}
\\\toprule \text{Model} & \text{AIC (logistic link)} & \text{AIC (linear link)} \\
    \midrule
    \endfirsthead
\\\toprule \text{Model} & \text{AIC (logistic link)} & \text{AIC (linear link)} \\
    \midrule
    \endhead
\midrule\multicolumn{3}{r}{{Continued on next page}} \\ \bottomrule
\endfoot
\bottomrule
\endlastfoot
        \{ \phi(\cdot)  ,  p(\cdot) \}         & 986   & 986 \\
        \{ \phi(\cdot)  ,  p(t) \}             & 993   & 993 \\
        \{ \phi(\cdot)  ,  p(h_2) \}           & 961   & 959 \\
        \{ \phi(\cdot)  ,  p(h_3) \}           & 948   & 948 \\
        \{ \phi(\cdot)  ,  p(h_4) \}           & 952   & 952 \\
        \{ \phi(\cdot)  ,  p(t+h_2) \}         & 969   & 977 \\
        \{ \phi(\cdot)  ,  p(t+h_3) \}         & 949   & 981 \\
        \{ \phi(\cdot)  ,  p(t+h_4) \}         & 953   & 999 \\
        \{ \phi(\cdot)  ,  p(t \times h_2) \}  & 970   & 1032 \\
        \{ \phi(\cdot)  ,  p(t \times h_3) \}  & 979   & 1131 \\
        \{ \phi(\cdot)  ,  p(t \times h_4) \}  & 993   & 1124 \\
        \{ \phi(t)  ,  p(\cdot) \}  &       & 994 \\
        \{ \phi(t)  ,  p(t) \}      &       & 996 \\
        \{ \phi(t)  ,  p(h_2) \}    & 963   & 963 \\
        \{ \phi(t)  ,  p(h_3) \}    & 952   & 952 \\
        \{ \phi(t)  ,  p(h_4) \}    & 956   & 956 \\
        \{ \phi(t)  ,  p(t+h_2) \}  & 973   & 976 \\
        \{ \phi(t)  ,  p(t+h_3) \}  & 954   & 968 \\
        \{ \phi(t)  ,  p(t+h_4) \}  & 958   & 975 \\
        \{ \phi(t)  ,  p(t \times h_2) \}  &       & 1018 \\
        \{ \phi(t)  ,  p(t \times h_3) \}  & 976   & 1165 \\
        \{ \phi(t)  ,  p(t \times h_4) \}  & 999   & 1167 \\
        \{ \phi(h_2)  ,  p(\cdot) \}  & 968   & 968 \\
        \{ \phi(h_3)  ,  p(\cdot) \}  & 972   & 972 \\
        \{ \phi(h_4)  ,  p(\cdot) \}  & 976   & 976 \\
        \{ \phi(h_2)  ,  p(t) \}      &       & 971 \\
        \{ \phi(h_3)  ,  p(t) \}      & 975   & 1055 \\
        \{ \phi(h_4)  ,  p(t) \}      & 979   & 979 \\
        \{ [\phi(h)  ,  p(h)]_2 \}           & 970   & 959 \\
        \{ [\phi(h)  ,  p(h)]_3 \}           & 951   & 951 \\
        \{ [\phi(h)  ,  p(h)]_4 \}           & 957   & 957 \\
        \{ [\phi(h)  ,  p(t+h)]_2 \}         & 967   & 972 \\
        \{ [\phi(h)  ,  p(t+h)]_3 \}         & 957   & 969 \\
        \{ [\phi(h)  ,  p(t+h)]_4 \}         & 959   & 976 \\
        \{ [\phi(h)  ,  p(t \times h)]_2 \}  & 987   & 993 \\
        \{ [\phi(h)  ,  p(t \times h)]_3 \}  & 978   & 1047 \\
        \{ [\phi(h)  ,  p(t \times h)]_4 \}  & 993   & 1063 \\
        \{ \phi(t+h_2)  ,  p(\cdot) \}       & 982   & 987 \\
        \{ \phi(t+h_3)  ,  p(\cdot) \}       & 977   & 983 \\
        \{ \phi(t+h_4)  ,  p(\cdot) \}       &       & 987 \\
        \{ \phi(t+h_2)  ,  p(t) \}           & 977   & 982 \\
        \{ \phi(t+h_3)  ,  p(t) \}           & 980   & 987 \\
        \{ \phi(t+h_4)  ,  p(t) \}           & 985   & 992 \\
        \{ [\phi(t+h)  ,  p(h)]_2 \}            & 965   & 967 \\
        \{ [\phi(t+h)  ,  p(h)]_3 \}            & 956   & 959 \\
        \{ [\phi(t+h)  ,  p(h)]_4 \}            & 962   & 966 \\
        \{ [\phi(t+h)  ,  p(t+h)]_2 \}          & 965   & 984 \\
        \{ [\phi(t+h)  ,  p(t+h)]_3 \}          & 959   & 1000 \\
        \{ [\phi(t+h)  ,  p(t+h)]_4 \}          & 965   & 1009 \\
        \{ [\phi(t+h)  ,  p(t \times h)]_2 \}   & 981   & 1043 \\
        \{ [\phi(t+h)  ,  p(t \times h)]_3 \}   & 987   & 1185 \\
        \{ [\phi(t+h)  ,  p(t \times h)]_4 \}   & 994   & 1080 \\
        \{ \phi(t \times h_2)  ,   p(\cdot) \}  & 978   & 991 \\
        \{ \phi(t \times h_3)  ,   p(\cdot) \}  & 993   & 1045 \\
        \{ \phi(t \times h_4)  ,   p(\cdot) \}  & 1012  & 1023 \\
        \{ [\phi(t \times h)  ,   p(h)]_2 \}    & 970   & 974 \\
        \{ [\phi(t \times h)  ,   p(h)]_3 \}    & 1000  & 990 \\
        \{ [\phi(t \times h)  ,   p(h)]_4 \}    & 1003  & 1000 \\
    %\bottomrule
\end{longtable}


\end{document}

在此处输入图片描述

在您的示例中,由于您使用了lc说明符,因此列宽会调整为最宽条目的宽度。第一页有宽标题,而第二页和第三页没有标题,因此它们较窄。我也在其中添加了标题。

答案2

环境xtabular会高估每行,为其计算添加比正常行至少多 10% 的空间。这是为了补偿更高的行。

当它决定必须生成新块时,xtabular关闭一个表并打开一个新表,因此不会保留前一个块的列宽。这是该包的一个功能。

第一个问题,即在页面底部留下未占用的空间,可以通过使用来解决\xentrystretch;第二个问题,除非仅指定固定宽度的列,否则是无法解决的。

\topcaption在表格前键入。

\documentclass[12pt,a4paper]{article}

\usepackage{showframe} % to show a page frame
\usepackage{amsmath}
\usepackage{xtab}
\usepackage{array}
\usepackage{booktabs}
\usepackage{caption} % better caption spacing

\begin{document}

\begin{center}
\renewcommand{\arraystretch}{1.5}
\xentrystretch{-0.1} % reduce the overshoot

\topcaption{AIC values}

\begin{xtabular}{>{$}l<{$} c c}

    \toprule
    \text{Model} & \text{AIC (logistic link)} & \text{AIC (linear link)} \\
    \midrule
        \{ \phi(\cdot)  ,  p(\cdot) \}         & 986   & 986 \\
        \{ \phi(\cdot)  ,  p(t) \}             & 993   & 993 \\
        \{ \phi(\cdot)  ,  p(h_2) \}           & 961   & 959 \\
        \{ \phi(\cdot)  ,  p(h_3) \}           & 948   & 948 \\
        \{ \phi(\cdot)  ,  p(h_4) \}           & 952   & 952 \\
        \{ \phi(\cdot)  ,  p(t+h_2) \}         & 969   & 977 \\
        \{ \phi(\cdot)  ,  p(t+h_3) \}         & 949   & 981 \\
        \{ \phi(\cdot)  ,  p(t+h_4) \}         & 953   & 999 \\
        \{ \phi(\cdot)  ,  p(t \times h_2) \}  & 970   & 1032 \\
        \{ \phi(\cdot)  ,  p(t \times h_3) \}  & 979   & 1131 \\
        \{ \phi(\cdot)  ,  p(t \times h_4) \}  & 993   & 1124 \\
        \{ \phi(t)  ,  p(\cdot) \}  &       & 994 \\
        \{ \phi(t)  ,  p(t) \}      &       & 996 \\
        \{ \phi(t)  ,  p(h_2) \}    & 963   & 963 \\
        \{ \phi(t)  ,  p(h_3) \}    & 952   & 952 \\
        \{ \phi(t)  ,  p(h_4) \}    & 956   & 956 \\
        \{ \phi(t)  ,  p(t+h_2) \}  & 973   & 976 \\
        \{ \phi(t)  ,  p(t+h_3) \}  & 954   & 968 \\
        \{ \phi(t)  ,  p(t+h_4) \}  & 958   & 975 \\
        \{ \phi(t)  ,  p(t \times h_2) \}  &       & 1018 \\
        \{ \phi(t)  ,  p(t \times h_3) \}  & 976   & 1165 \\
        \{ \phi(t)  ,  p(t \times h_4) \}  & 999   & 1167 \\
        \{ \phi(h_2)  ,  p(\cdot) \}  & 968   & 968 \\
        \{ \phi(h_3)  ,  p(\cdot) \}  & 972   & 972 \\
        \{ \phi(h_4)  ,  p(\cdot) \}  & 976   & 976 \\
        \{ \phi(h_2)  ,  p(t) \}      &       & 971 \\
        \{ \phi(h_3)  ,  p(t) \}      & 975   & 1055 \\
        \{ \phi(h_4)  ,  p(t) \}      & 979   & 979 \\
        \{ [\phi(h)  ,  p(h)]_2 \}           & 970   & 959 \\
        \{ [\phi(h)  ,  p(h)]_3 \}           & 951   & 951 \\
        \{ [\phi(h)  ,  p(h)]_4 \}           & 957   & 957 \\
        \{ [\phi(h)  ,  p(t+h)]_2 \}         & 967   & 972 \\
        \{ [\phi(h)  ,  p(t+h)]_3 \}         & 957   & 969 \\
        \{ [\phi(h)  ,  p(t+h)]_4 \}         & 959   & 976 \\
        \{ [\phi(h)  ,  p(t \times h)]_2 \}  & 987   & 993 \\
        \{ [\phi(h)  ,  p(t \times h)]_3 \}  & 978   & 1047 \\
        \{ [\phi(h)  ,  p(t \times h)]_4 \}  & 993   & 1063 \\
        \{ \phi(t+h_2)  ,  p(\cdot) \}       & 982   & 987 \\
        \{ \phi(t+h_3)  ,  p(\cdot) \}       & 977   & 983 \\
        \{ \phi(t+h_4)  ,  p(\cdot) \}       &       & 987 \\
        \{ \phi(t+h_2)  ,  p(t) \}           & 977   & 982 \\
        \{ \phi(t+h_3)  ,  p(t) \}           & 980   & 987 \\
        \{ \phi(t+h_4)  ,  p(t) \}           & 985   & 992 \\
        \{ [\phi(t+h)  ,  p(h)]_2 \}            & 965   & 967 \\
        \{ [\phi(t+h)  ,  p(h)]_3 \}            & 956   & 959 \\
        \{ [\phi(t+h)  ,  p(h)]_4 \}            & 962   & 966 \\
        \{ [\phi(t+h)  ,  p(t+h)]_2 \}          & 965   & 984 \\
        \{ [\phi(t+h)  ,  p(t+h)]_3 \}          & 959   & 1000 \\
        \{ [\phi(t+h)  ,  p(t+h)]_4 \}          & 965   & 1009 \\
        \{ [\phi(t+h)  ,  p(t \times h)]_2 \}   & 981   & 1043 \\
        \{ [\phi(t+h)  ,  p(t \times h)]_3 \}   & 987   & 1185 \\
        \{ [\phi(t+h)  ,  p(t \times h)]_4 \}   & 994   & 1080 \\
        \{ \phi(t \times h_2)  ,   p(\cdot) \}  & 978   & 991 \\
        \{ \phi(t \times h_3)  ,   p(\cdot) \}  & 993   & 1045 \\
        \{ \phi(t \times h_4)  ,   p(\cdot) \}  & 1012  & 1023 \\
        \{ [\phi(t \times h)  ,   p(h)]_2 \}    & 970   & 974 \\
        \{ [\phi(t \times h)  ,   p(h)]_3 \}    & 1000  & 990 \\
        \{ [\phi(t \times h)  ,   p(h)]_4 \}    & 1003  & 1000 \\
    \bottomrule

\end{xtabular}

\end{center}

\end{document}

在此处输入图片描述

一个更完整的例子,其中不同的列宽通过重复标题被稍微掩盖(也可以根据第一列中最宽的条目添加幻影宽度)。

\documentclass[12pt,a4paper]{article}
\usepackage{showframe}
\usepackage{amsmath}
\usepackage{xtab}
\usepackage{array}
\usepackage{booktabs,caption}


\begin{document}


\begin{center}
\renewcommand{\arraystretch}{1.5}
\xentrystretch{-0.12}

\topcaption{AIC values}
\tablehead{%
  \toprule
  \text{Model} & \text{AIC (logistic link)} & \text{AIC (linear link)} \\
  \midrule
}
\tabletail{%
  \midrule[\heavyrulewidth]
  \multicolumn{3}{r}{\footnotesize\itshape Continues}\\
}
\tablelasttail{\bottomrule}

\begin{xtabular}{>{$}l<{$} c c}

\{ \phi(\cdot),p(\cdot) \}         & 986   & 986 \\
\{ \phi(\cdot),p(t) \}             & 993   & 993 \\
\{ \phi(\cdot),p(h_2) \}           & 961   & 959 \\
\{ \phi(\cdot),p(h_3) \}           & 948   & 948 \\
\{ \phi(\cdot),p(h_4) \}           & 952   & 952 \\
\{ \phi(\cdot),p(t+h_2) \}         & 969   & 977 \\
\{ \phi(\cdot),p(t+h_3) \}         & 949   & 981 \\
\{ \phi(\cdot),p(t+h_4) \}         & 953   & 999 \\
\{ \phi(\cdot),p(t \times h_2) \}  & 970   & 1032 \\
\{ \phi(\cdot),p(t \times h_3) \}  & 979   & 1131 \\
\{ \phi(\cdot),p(t \times h_4) \}  & 993   & 1124 \\
\{ \phi(t),p(\cdot) \}             &       & 994 \\
\{ \phi(t),p(t) \}                 &       & 996 \\
\{ \phi(t),p(h_2) \}               & 963   & 963 \\
\{ \phi(t),p(h_3) \}               & 952   & 952 \\
\{ \phi(t),p(h_4) \}               & 956   & 956 \\
\{ \phi(t),p(t+h_2) \}             & 973   & 976 \\
\{ \phi(t),p(t+h_3) \}             & 954   & 968 \\
\{ \phi(t),p(t+h_4) \}             & 958   & 975 \\
\{ \phi(t),p(t \times h_2) \}      &       & 1018 \\
\{ \phi(t),p(t \times h_3) \}      & 976   & 1165 \\
\{ \phi(t),p(t \times h_4) \}      & 999   & 1167 \\
\{ \phi(h_2),p(\cdot) \}           & 968   & 968 \\
\{ \phi(h_3),p(\cdot) \}           & 972   & 972 \\
\{ \phi(h_4),p(\cdot) \}           & 976   & 976 \\
\{ \phi(h_2),p(t) \}               &       & 971 \\
\{ \phi(h_3),p(t) \}               & 975   & 1055 \\
\{ \phi(h_4),p(t) \}               & 979   & 979 \\
\{ [\phi(h),p(h)]_2 \}             & 970   & 959 \\
\{ [\phi(h),p(h)]_3 \}             & 951   & 951 \\
\{ [\phi(h),p(h)]_4 \}             & 957   & 957 \\
\{ [\phi(h),p(t+h)]_2 \}           & 967   & 972 \\
\{ [\phi(h),p(t+h)]_3 \}           & 957   & 969 \\
\{ [\phi(h),p(t+h)]_4 \}           & 959   & 976 \\
\{ [\phi(h),p(t \times h)]_2 \}    & 987   & 993 \\
\{ [\phi(h),p(t \times h)]_3 \}    & 978   & 1047 \\
\{ [\phi(h),p(t \times h)]_4 \}    & 993   & 1063 \\
\{ \phi(t+h_2),p(\cdot) \}         & 982   & 987 \\
\{ \phi(t+h_3),p(\cdot) \}         & 977   & 983 \\
\{ \phi(t+h_4),p(\cdot) \}         &       & 987 \\
\{ \phi(t+h_2),p(t) \}             & 977   & 982 \\
\{ \phi(t+h_3),p(t) \}             & 980   & 987 \\
\{ \phi(t+h_4),p(t) \}             & 985   & 992 \\
\{ [\phi(t+h),p(h)]_2 \}           & 965   & 967 \\
\{ [\phi(t+h),p(h)]_3 \}           & 956   & 959 \\
\{ [\phi(t+h),p(h)]_4 \}           & 962   & 966 \\
\{ [\phi(t+h),p(t+h)]_2 \}         & 965   & 984 \\
\{ [\phi(t+h),p(t+h)]_3 \}         & 959   & 1000 \\
\{ [\phi(t+h),p(t+h)]_4 \}         & 965   & 1009 \\
\{ [\phi(t+h),p(t \times h)]_2 \}  & 981   & 1043 \\
\{ [\phi(t+h),p(t \times h)]_3 \}  & 987   & 1185 \\
\{ [\phi(t+h),p(t \times h)]_4 \}  & 994   & 1080 \\
\{ \phi(t \times h_2),p(\cdot) \}  & 978   & 991 \\
\{ \phi(t \times h_3),p(\cdot) \}  & 993   & 1045 \\
\{ \phi(t \times h_4), p(\cdot) \  & 1012  & 1023 \\
\{ [\phi(t \times h), p(h)]_2 \}   & 970   & 974 \\
\{ [\phi(t \times h), p(h)]_3 \}   & 1000  & 990 \\
\{ [\phi(t \times h), p(h)]_4 \}   & 1003  & 1000 \\

\end{xtabular}

\end{center}

\end{document}

在此处输入图片描述

就 而言,仍然不令人满意longtable

相关内容