我的 MWE:
\documentclass{report}
\usepackage{amsmath}
\begin{document}
The partial derivatives are given by:
\begin{subequations}
\begin{align}
\frac{\partial \beta_{2,1}}{\partial x_1} &= \gamma_2x_2 \cos(x_1), &&\frac{\partial \beta_{2,1}}{\partial x_2} = \gamma_2 \sin(x_1), &&&\frac{\partial \beta_{2,1}}{\partial u} = 0\\
\frac{\partial \beta_{2,2}}{\partial x_1} &= 0, &&\frac{\partial \beta_{2,2}}{\partial x_2} = \gamma_2 x_2, &&&\frac{\partial \beta_{2,2}}{\partial u} = 0\\
\frac{\partial \beta_{2,3}}{\partial x_1} &= 0, &&\frac{\partial \beta_{2,3}}{\partial x_2} = \gamma_2 u, &&&\frac{\partial \beta_{2,3}}{\partial u} = \gamma_2x_2
\end{align}
\end{subequations}
\end{document}
结果:
然而,我希望获得以下结果:
答案1
为了更全面地控制方程的间距,您可以使用环境alignat
。此外,为了简化输入偏导数(仅限一阶),我引入了一个宏,\pder
它有一个参数——实际上是两个,用逗号分隔,基于包esdiff
和xparse
。下面是一个例子,其中方程组以 0.8em 分隔:
\documentclass{report}
\usepackage{amsmath}
\usepackage{esdiff}
\usepackage{xparse}
\NewDocumentCommand\pder{>{\SplitArgument{1}{,}}m}{\pderaux#1}
\NewDocumentCommand\pderaux{m m}{\diffp{{#1}}{{#2}}}
\begin{document}
The partial derivatives are given by:
\begin{subequations}
\begin{alignat}{5}
\pder{\beta_{2,1}, x_1} & = \gamma_2x_2 \cos(x_1), &\hspace{0.8em} \pder{\beta_{2,1}, x_2} & = \gamma_2 \sin(x_1), &\hspace{0.8em} \pder{\beta_{2,1}, u} &= 0\\
\pder{\beta_{2,2}, x_1} & = 0,& \pder{\beta_{2,2}, x_2}&= \gamma_2 x_2,& \pder{\beta_{2,2}, u} &= 0 \\
\pder{\beta_{2,3}, x_1} & = 0, & \pder{\beta_{2,3}, x_2} & = \gamma_2 u, & \pder{\beta_{2,3}, u} & = \gamma_2x_2
\end{alignat}
\end{subequations}
\end{document}
答案2
通过插入更多“与”符号,更准确地表达LaTeX
您想要的间距。
请注意将 & 符号后等号 ( =&
) 会使等号和其后的字符之间的间距变小。将 & 符号前(即&=
)将产生稍微漂亮一点的间距。
\documentclass{report}
\usepackage{amsmath}
\begin{document}
The partial derivatives are given by:
\begin{subequations}
\begin{align}
\frac{\partial \beta_{2,1}}{\partial x_1} &= \gamma_2x_2 \cos(x_1), &\frac{\partial \beta_{2,1}}{\partial x_2} &= \gamma_2 \sin(x_1), &\frac{\partial \beta_{2,1}}{\partial u} &= 0\\
\frac{\partial \beta_{2,2}}{\partial x_1} &= 0, &\frac{\partial \beta_{2,2}}{\partial x_2} &= \gamma_2 x_2, &\frac{\partial \beta_{2,2}}{\partial u} &= 0\\
\frac{\partial \beta_{2,3}}{\partial x_1} &= 0, &\frac{\partial \beta_{2,3}}{\partial x_2} &= \gamma_2 u, &\frac{\partial \beta_{2,3}}{\partial u} &= \gamma_2x_2
\end{align}
\end{subequations}
\end{document}