$\frac{dP}{dr}=\frac{-\Big(P+\rho (P)c^2 \Big)} {2} \frac {d\nu} {dr}\]$\\
\newline
$$\Rightarrow d\nu = \frac {-2dP} {P+\rho (P) c^2}$$\\
\bigskip \newline
$$ \nu (r) = - \int_{0}^{P(r)} \frac {2dP}{P+\rho (P) c^2} + \nu (r_b)$$
\newline
\newline
\newline
$$ e^{\nu(r)} &= e^{\nu(r_b) - \int_{0}^{P(r)} \frac {2dP}{P+\rho (P) c^2} }$$
\newline
$$ e^ {\nu (r)}= e^{\nu(r_b)} exp \Big[-\int_{0}^{P(r)} \frac {2dP}{P+\rho (P) c^2} \Big]$$
我是 Latex 的新手,所以我的代码看起来很简单,你能帮我对齐这些方程式吗?
答案1
通过使用align*
环境(由amsmath
包),可以将五个方程分组并水平对齐。你没有说如何它们应该对齐,所以我假设它们应该在相应的=
符号上对齐。
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align*}
\frac{dP}{dr}&=\frac{-\bigl(P+\rho (P)c^2 \bigr)} {2}
\frac {d\nu} {dr}\\
\Rightarrow d\nu &= \frac {-2dP} {P+\rho (P) c^2} \\
\nu (r) &= - \int_{0}^{P(r)} \frac {2dP}{P+\rho (P) c^2} + \nu (r_b)\\
e^{\nu(r)} &= \exp\biggl[\nu(r_b) - \int_{0}^{P(r)}
\frac {2dP}{P+\rho (P) c^2} \biggr]\\
e^ {\nu (r)}&= e^{\nu(r_b)} \exp \biggl[-\int_{0}^{P(r)}
\frac {2dP}{P+\rho (P) c^2} \biggr]
\end{align*}
\end{document}
显然,最大的变化是align*
环境的使用和所有指令的消除\newline
。其他一些变化:在第一行中使用\bigl(
和(您使用的是和);在最后两行中使用和;并且在最后两行中使用(请注意,“exp”字符串设置为直立字母)。\bigr)
\Big(
\Big)
\biggl[
\biggr]
\exp
另请参阅帖子$$、[、align、equation 和 displaymath 之间有什么区别?讨论这些显示数学环境的不同之处。
答案2
这就是你要找的东西吗?
\begin{align*}
\frac{dP}{dr}=\frac{-\left(P+\rho (P)c^2 \right)}{2} \frac {d\nu}{dr}\Rightarrow d\nu &= \frac {-2dP} {P+\rho (P) c^2}\\
\nu (r) &= \nu (r_b)- \int_{0}^{P(r)} \frac {2dP}{P+\rho (P) c^2} \\
e^{\nu(r)} &= e^{\nu(r_b) - \int_{0}^{P(r)} \frac {2dP}{P+\rho (P) c^2} }\\
e^ {\nu (r)}&= e^{\nu(r_b)} \exp \left(-\int_{0}^{P(r)} \frac {2dP}{P+\rho (P) c^2} \right)\end{align*}
答案3
以下是我的做法:
\documentclass{article}
\usepackage{mathtools}
\newcommand*\ABLD{\ArrowBetweenLines[\Downarrow]&&}
\newcommand*\diffOp{\mathop{}\!\mathit{d}}
\newcommand*\diff[2]{\frac{\diffOp #1}{\diffOp #2}} % can be made more flexible but no need in this case
\begin{document}
\begin{alignat*}{2}
&& \diff{P}{r}
&= \frac{-(P + \rho(P)c^{2})}{2}\diff{\nu}{r}\\
\ABLD
\diffOp \nu
&= \frac{-2\diffOp P}{P + \rho(P)c^{2}}\\
\ABLD
\nu(r)
&= -\int_{0}^{P(r)} \frac{2\diffOp P}{P + \rho(P)c^{2}} + \nu(r_{b})\\
\ABLD
e^{\nu(r)}
&= \exp{\mkern -8mu}\left[\nu(r_{b}) - \int_{0}^{P(r)} \frac{2\diffOp P}{P + \rho(P)c^{2}}\right]\\
\ABLD
e^{\nu(r)}
&= e^{\nu(r_{b})} \exp{\mkern -8mu}\left[-\int_{0}^{P(r)} \frac{2\diffOp P}{P + \rho(P)c^{2}}\right]
\end{alignat*}
\end{document}
或者可能
\documentclass{article}
\usepackage{mathtools}
\newcommand*\ABLD{\ArrowBetweenLines[\Downarrow]&&}
\newcommand*\diffOp{\mathop{}\!\mathit{d}}
\newcommand*\diff[2]{\frac{\diffOp #1}{\diffOp #2}} % can be made more flexible but no need in this case
\begin{document}
\begin{alignat*}{2}
&& \diff{P}{r}
&= \frac{-(P + \rho(P)c^{2})}{2}\diff{\nu}{r}\\
\ABLD
\diffOp \nu
&= \frac{-2\diffOp P}{P + \rho(P)c^{2}}\\
\ABLD
\nu(r)
&= -\int_{0}^{P(r)} \frac{2\diffOp P}{P + \rho(P)c^{2}} + \nu(r_{b})\\
\ABLD
e^{\nu(r)}
&= \exp{\mkern -8mu}\left[\nu(r_{b}) - \int_{0}^{P(r)} \frac{2\diffOp P}{P + \rho(P)c^{2}}\right]{\mkern -6mu}
= e^{\nu(r_{b})} \exp{\mkern -8mu}\left[-\int_{0}^{P(r)} \frac{2\diffOp P}{P + \rho(P)c^{2}}\right]
\end{alignat*}
\end{document}
或者可能
\documentclass{article}
\usepackage{mathtools}
\newcommand*\ABLD{\ArrowBetweenLines[\Downarrow]&&}
\newcommand*\diffOp{\mathop{}\!\mathit{d}}
\newcommand*\diff[2]{\frac{\diffOp #1}{\diffOp #2}} % can be made more flexible but no need in this case
\begin{document}
\begin{alignat*}{2}
&& \diff{P}{r}
&= \frac{-(P + \rho(P)c^{2})}{2}\diff{\nu}{r}\\
\ABLD
\diffOp \nu
&= \frac{-2\diffOp P}{P + \rho(P)c^{2}}\\
\ABLD
\nu(r)
&= -\int_{0}^{P(r)} \frac{2\diffOp P}{P + \rho(P)c^{2}} + \nu(r_{b})\\
\ABLD
e^{\nu(r)}
&= \exp{\mkern -4mu}\biggl[\nu(r_{b}) - \int_{0}^{P(r)} \frac{2\diffOp P}{P + \rho(P)c^{2}}\biggr]{\mkern -4mu}\\
&&&= e^{\nu(r_{b})} \exp{\mkern -4mu}\biggl[-\int_{0}^{P(r)} \frac{2\diffOp P}{P + \rho(P)c^{2}}\biggr]
\end{alignat*}
\end{document}
如果您想要更小的括号和最后两个=
s 的对齐。
PS 我可能会选择最后一个版本。