如何在(elsarticle)中显示方程式

如何在(elsarticle)中显示方程式

使用时方程式无法正确显示

\documentclass[final,5p,times,twocolumn]{elsarticle}

而它们正确显示

\documentclass[preprint,12pt,authoryear]{elsarticle}

答案1

\documentclass[final,5p,times,twocolumn]{elsarticle}

这已经足够了。但是一列只能包含 29 行,不能超过这个数字。第一列必须有一些文本,并且文本可以跟在所需的方程式后面。否则方程式将移至第一页的第二列。选项 5p 用于在一页中有两列。它称为模型 5 + 日记帐。请参阅elsdoc.pdf文件。

代码:

\documentclass[preprint,12pt,authoryear,[5p,times,twocolumn,finalprint]{elsarticle}
\usepackage{amsmath}
\begin{document}

\section{some text}
Sometext sometext  Sometext sometext Sometext sometext Sometext sometext Sometext sometext Sometext sometext sometext Sometext sometext  Sometext sometext Sometext sometext Sometext sometext Sometext sometext Sometext sometext sometext Sometext sometext  Sometext sometext Sometext sometext Sometext sometext Sometext sometext Sometext sometext sometext Sometext sometext  Sometext sometext Sometext sometext Sometext sometext Sometext sometext Sometext sometext sometext Sometext sometext  Sometext sometext Sometext sometext Sometext sometext Sometext sometext Sometext sometext sometext Sometext sometext  Sometext sometext Sometext sometext Sometext sometext Sometext sometext Sometext sometext sometext Sometext sometext  Sometext sometext Sometext sometext Sometext sometext Sometext sometext Sometext sometext sometext Sometext sometext  Sometext sometext Sometext Sometext sometext Sometext sometext Sometext sometext sometext Sometext sometext  Sometext sometext Sometext \\
\begin{align*}
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
\end{align*}
\begin{align*}
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
\end{align*}
\begin{align*}
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
\end{align*}
\begin{align*}
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
(a+b)^2 &= a^2+2ab+b^2\\
(a-b)^2 &= a^2-2ab+b^2\\
\end{align*}
\end{document}

输出:

elsarticleclass

相关内容