方程的侧面(一个大矩阵)

方程的侧面(一个大矩阵)

我希望用于sideways我的大矩阵,例如。看起来很简单。但对我来说不起作用。

\documentclass[a4paper,12pt]{article}

\usepackage{amsmath}
\usepackage{rotating}

\begin{document}

\begin{sideways}
\begin{equation}
    \begin{bmatrix}
        \frac{1}{\phi_1} &
        \frac{1}{\phi_1} &
        \frac{1}{\phi_1} &
        \frac{1}{\phi_1} &
        0 &
        0 &
        0 &
        0 &
        0 &
        0 \\
        0 &
        \frac{1}{\phi_2} &
        \frac{1}{\phi_2} &
        \frac{1}{\phi_2} &
        \frac{1}{\phi_2} &
        \frac{1}{\phi_2} &
        \frac{1}{\phi_2} &
        0 &
        0 &
        0 \\
        0 &
        0 &
        \frac{1}{\phi_3} &
        \frac{1}{\phi_3} &
        0 &
        \frac{1}{\phi_3} &
        \frac{1}{\phi_3} &
        \frac{1}{\phi_3} &
        \frac{1}{\phi_3} &
        0 \\
        0 &
        0 &
        0 &
        \frac{1}{\phi_4} &
        0 &
        0 &
        \frac{1}{\phi_4} &
        0 &
        \frac{1}{\phi_4} &
        \frac{1}{\phi_4} \\
        \frac{1}{1+\mathrm{e}^{a2+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        0 &
        0 &
        0 &
        0 &
        0 &
        0 \\
        0 &
        \frac{1}{1+\mathrm{e}^{a3}} &
        \frac{-1}{1+\mathrm{e}^{-a3}} &
        \frac{-1}{1+\mathrm{e}^{-a3}} &
        \frac{1}{1+\mathrm{e}^{a3+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a3+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a3+m)}} &
        0 &
        0 &
        0 \\
        0 &
        0 &
        \frac{1}{1+\mathrm{e}^{a4}} &
        \frac{-1}{1+\mathrm{e}^{-a4}} &
        0 &
        \frac{1}{1+\mathrm{e}^{a4}} &
        \frac{-1}{1+\mathrm{e}^{-a4}} &
        \frac{1}{1+\mathrm{e}^{a4+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a4+m)}} &
        0 \\
        0 &
        0 &
        0 &
        \frac{1}{1+\mathrm{e}^{a5}} &
        0 &
        0 &
        \frac{1}{1+\mathrm{e}^{a5}} &
        0 &
        \frac{1}{1+\mathrm{e}^{a5}} &
        \frac{1}{1+\mathrm{e}^{a5+m}} \\
        \frac{1}{1+\mathrm{e}^{a2+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{1}{1+\mathrm{e}^{a3+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a3+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{1}{1+\mathrm{e}^{a4+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a4+m)}} &
        \frac{1}{1+\mathrm{e}^{a5+m}}
    \end{bmatrix}
\end{equation}
\end{sideways}

\end{document}

但它似乎不起作用。 在此处输入图片描述

我希望它需要数学环境?

答案1

我更愿意将矩阵放进去(戴上我的文字编辑帽子)。很多数据是重复的,这为操作提供了一些空间:

在此处输入图片描述

\documentclass[a4paper,12pt]{article}

\usepackage{mathtools}
\usepackage{lipsum}

\begin{document}

\lipsum[4]

\begin{equation}
    \begin{bmatrix}
        \phi_1^{-1} &
        \phi_1^{-1} &
        \phi_1^{-1} &
        \phi_1^{-1} &
        0 &
        0 &
        0 &
        0 &
        0 &
        0 \\
        0 &
        \phi_2^{-1} &
        \phi_2^{-1} &
        \phi_2^{-1} &
        \phi_2^{-1} &
        \phi_2^{-1} &
        \phi_2^{-1} &
        0 &
        0 &
        0 \\
        0 &
        0 &
        \phi_3^{-1} &
        \phi_3^{-1} &
        0 &
        \phi_3^{-1} &
        \phi_3^{-1} &
        \phi_3^{-1} &
        \phi_3^{-1} &
        0 \\
        0 &
        0 &
        0 &
        \phi_4^{-1} &
        0 &
        0 &
        \phi_4^{-1} &
        0 &
        \phi_4^{-1} &
        \phi_4^{-1} \\
        f(b_2) &
        g(b_2) &
        g(b_2) &
        g(b_2) &
        0 &
        0 &
        0 &
        0 &
        0 &
        0 \\
        0 &
        f(a_3) &
        g(a_3) &
        g(a_3) &
        f(b_3) &
        g(b_3) &
        g(b_3) &
        0 &
        0 &
        0 \\
        0 &
        0 &
        f(a_4) &
        g(a_4) &
        0 &
        f(a_4) &
        g(a_4) &
        f(b_4) &
        g(b_4) &
        0 \\
        0 &
        0 &
        0 &
        f(a_5) &
        0 &
        0 &
        f(a_5) &
        0 &
        f(a_5) &
        f(b_5) \\
        f(b_2) &
        g(b_2) &
        g(b_2) &
        g(b_2) &
        f(b_3) &
        g(b_3) &
        g(b_2) &
        f(b_4) &
        g(b_4) &
        f(b_5)
    \end{bmatrix}
,\end{equation}
where
\[
    f(a) \coloneqq \frac{1}{1+\mathrm{e}^a}
,\quad
    g(a) \coloneqq \frac{-1}{1+\mathrm{e}^{-a}}
\quad\text{and}\quad
    b_i \coloneqq a_i+m
.\]

\lipsum[13]

\end{document}

答案2

rotating包的sideways环境实际上只是为了与 LaTex2.09 版本兼容,它只是\rotatebox提供旧语法的一个薄包装。

但是框命令会将您带出数学模式,因此您需要$重新进入:

\documentclass[a4paper,12pt]{article}

\usepackage{amsmath}
\usepackage{graphicx}

\begin{document}


\begin{equation}
    \rotatebox{90}{$\begin{bmatrix}
        \frac{1}{\phi_1} &
        \frac{1}{\phi_1} &
        \frac{1}{\phi_1} &
        \frac{1}{\phi_1} &
        0 &
        0 &
        0 &
        0 &
        0 &
        0 \\
        0 &
        \frac{1}{\phi_2} &
        \frac{1}{\phi_2} &
        \frac{1}{\phi_2} &
        \frac{1}{\phi_2} &
        \frac{1}{\phi_2} &
        \frac{1}{\phi_2} &
        0 &
        0 &
        0 \\
        0 &
        0 &
        \frac{1}{\phi_3} &
        \frac{1}{\phi_3} &
        0 &
        \frac{1}{\phi_3} &
        \frac{1}{\phi_3} &
        \frac{1}{\phi_3} &
        \frac{1}{\phi_3} &
        0 \\
        0 &
        0 &
        0 &
        \frac{1}{\phi_4} &
        0 &
        0 &
        \frac{1}{\phi_4} &
        0 &
        \frac{1}{\phi_4} &
        \frac{1}{\phi_4} \\
        \frac{1}{1+\mathrm{e}^{a2+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        0 &
        0 &
        0 &
        0 &
        0 &
        0 \\
        0 &
        \frac{1}{1+\mathrm{e}^{a3}} &
        \frac{-1}{1+\mathrm{e}^{-a3}} &
        \frac{-1}{1+\mathrm{e}^{-a3}} &
        \frac{1}{1+\mathrm{e}^{a3+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a3+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a3+m)}} &
        0 &
        0 &
        0 \\
        0 &
        0 &
        \frac{1}{1+\mathrm{e}^{a4}} &
        \frac{-1}{1+\mathrm{e}^{-a4}} &
        0 &
        \frac{1}{1+\mathrm{e}^{a4}} &
        \frac{-1}{1+\mathrm{e}^{-a4}} &
        \frac{1}{1+\mathrm{e}^{a4+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a4+m)}} &
        0 \\
        0 &
        0 &
        0 &
        \frac{1}{1+\mathrm{e}^{a5}} &
        0 &
        0 &
        \frac{1}{1+\mathrm{e}^{a5}} &
        0 &
        \frac{1}{1+\mathrm{e}^{a5}} &
        \frac{1}{1+\mathrm{e}^{a5+m}} \\
        \frac{1}{1+\mathrm{e}^{a2+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{1}{1+\mathrm{e}^{a3+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a3+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{1}{1+\mathrm{e}^{a4+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a4+m)}} &
        \frac{1}{1+\mathrm{e}^{a5+m}}
    \end{bmatrix}$}
\end{equation}


\end{document}

答案3

环境的内容sideways存储在 中,\hbox以便稍后处理。在 中\hbox,显示数学无法识别。(TeX 称之为“内部水平模式”)。需要通过将内容包装在\parboxminipage环境中来切换到“垂直模式”。因此

\begin{sideways}
  \parbox{8in}{
  \begin{equation}
    E=mc^2
  \end{equation}
  }
\end{sideways}

请注意,矩阵在横放时太高,超出正常页面尺寸。它仍会放置,但不知何故会移到下一页,除非它适合一页。

答案4

作为 David 为您解决问题的替代方案sideways。您可以landscapelscape支持数学模式的包中考虑。

\documentclass[a4paper,12pt]{article}

\usepackage{amsmath}
\usepackage{lscape}

\begin{document}

\begin{landscape}
    \begin{equation}
    \begin{bmatrix}
        \frac{1}{\phi_1} &
        \frac{1}{\phi_1} &
        \frac{1}{\phi_1} &
        \frac{1}{\phi_1} &
        0 &
        0 &
        0 &
        0 &
        0 &
        0 \\
        0 &
        \frac{1}{\phi_2} &
        \frac{1}{\phi_2} &
        \frac{1}{\phi_2} &
        \frac{1}{\phi_2} &
        \frac{1}{\phi_2} &
        \frac{1}{\phi_2} &
        0 &
        0 &
        0 \\
        0 &
        0 &
        \frac{1}{\phi_3} &
        \frac{1}{\phi_3} &
        0 &
        \frac{1}{\phi_3} &
        \frac{1}{\phi_3} &
        \frac{1}{\phi_3} &
        \frac{1}{\phi_3} &
        0 \\
        0 &
        0 &
        0 &
        \frac{1}{\phi_4} &
        0 &
        0 &
        \frac{1}{\phi_4} &
        0 &
        \frac{1}{\phi_4} &
        \frac{1}{\phi_4} \\
        \frac{1}{1+\mathrm{e}^{a2+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        0 &
        0 &
        0 &
        0 &
        0 &
        0 \\
        0 &
        \frac{1}{1+\mathrm{e}^{a3}} &
        \frac{-1}{1+\mathrm{e}^{-a3}} &
        \frac{-1}{1+\mathrm{e}^{-a3}} &
        \frac{1}{1+\mathrm{e}^{a3+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a3+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a3+m)}} &
        0 &
        0 &
        0 \\
        0 &
        0 &
        \frac{1}{1+\mathrm{e}^{a4}} &
        \frac{-1}{1+\mathrm{e}^{-a4}} &
        0 &
        \frac{1}{1+\mathrm{e}^{a4}} &
        \frac{-1}{1+\mathrm{e}^{-a4}} &
        \frac{1}{1+\mathrm{e}^{a4+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a4+m)}} &
        0 \\
        0 &
        0 &
        0 &
        \frac{1}{1+\mathrm{e}^{a5}} &
        0 &
        0 &
        \frac{1}{1+\mathrm{e}^{a5}} &
        0 &
        \frac{1}{1+\mathrm{e}^{a5}} &
        \frac{1}{1+\mathrm{e}^{a5+m}} \\
        \frac{1}{1+\mathrm{e}^{a2+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{1}{1+\mathrm{e}^{a3+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a3+m)}} &
        \frac{-1}{1+\mathrm{e}^{-(a2+m)}} &
        \frac{1}{1+\mathrm{e}^{a4+m}} &
        \frac{-1}{1+\mathrm{e}^{-(a4+m)}} &
        \frac{1}{1+\mathrm{e}^{a5+m}}
    \end{bmatrix}
\end{equation}
\end{landscape}

\end{document}

相关内容