我需要帮助来对齐 eqnarray 中的不等式。问题是不等式之前的第一个项仍然在右边。我尝试操纵空格,但看起来不对。谢谢
方程如下:
\begin{eqnarray}
\finv(F^{\mathrm{CE}},F^\mathrm{a})=
\begin{cases}
\dfrac{F^{\mathrm{CE}}}{\varepsilon}\left({\dfrac{\varepsilon-F^{\mathrm{a}}}{F^{\mathrm{a}}+\varepsilon/A_{\mathrm{f}}+\xi}+{\dfrac{F^\mathrm{a}}{F^\mathrm{a}+\xi}}}\right) - \dfrac{F^\mathrm{a}}{F^\mathrm{a}+\xi}, F^{\mathrm{CE}} &<0 \\
\nonumber \\
\dfrac{F^{\mathrm{CE}}-F^\mathrm{a}}{F^{\mathrm{a}}+F^{\mathrm{CE}}/A_{\mathrm{f}}+\xi}, 0 &\leq F^{\mathrm{CE}} <F^\mathrm{\mathrm{a}} \\
\nonumber \\
\dfrac{F^{\mathrm{CE}}-F^\mathrm{a}}{\dfrac{{(2+2/A_{\mathrm{f}})}{(F^\mathrm{a}\flen - F^{\mathrm{CE}})}}{\flen - 1}+\xi}, F^\mathrm{a} & \leq F^{\mathrm{CE}} < 0.95F^\mathrm{a}\flen \\
\nonumber \\
f_{v_0} + \dfrac{F^{\mathrm{CE}} - 0.95F^\mathrm{a} \flen }{\varepsilon F^\mathrm{a} \flen}(f_{v_1} - f_{v_0}), 0.95F^\mathrm{a} \flen & \leq F^{\mathrm{CE}}
\end{cases}
\end{eqnarray}
答案1
eqnarray
我认为您根本不需要环境。相反,将环境cases
(或如下例所示dcases
)嵌入到普通equation
环境中。
\documentclass{article}
\usepackage[a4paper,margin=2.5cm]{geometry} % choose paper size and margins
\usepackage{mathtools} % for 'dcases' environment
\def\flen{\bar{F}^\mathrm{M}_{\mathrm{len}}}
\def\finv{{(\bar{F}^{\mathrm{M}}_{\mathrm{V}}})^{-1}}
\begin{document}
\begin{equation}
\finv(F^{\mathrm{CE}},F^\mathrm{a})=
\begin{dcases}
\frac{F^{\mathrm{CE}}}{\varepsilon}\left(\frac{\varepsilon-F^{\mathrm{a}}}{F^{\mathrm{a}}+\varepsilon/A_{\mathrm{f}}+\xi}+{\frac{F^\mathrm{a}}{F^\mathrm{a}+\xi}}\right) - \frac{F^\mathrm{a}}{F^\mathrm{a}+\xi}\,, & \phantom{0\le{}} F^{\mathrm{CE}} <0 \\[1.5ex]
\frac{F^{\mathrm{CE}}-F^\mathrm{a}}{F^{\mathrm{a}}+F^{\mathrm{CE}}/A_{\mathrm{f}}+\xi}\,, & 0 \leq F^{\mathrm{CE}} <F^\mathrm{\mathrm{a}} \\[1.5ex]
\frac{F^{\mathrm{CE}}-F^\mathrm{a}}{\dfrac{{(2+2/A_{\mathrm{f}})}{(F^\mathrm{a}\flen - F^{\mathrm{CE}})}}{\flen - 1}+\xi}\,, & F^\mathrm{a} \leq F^{\mathrm{CE}} < 0.95F^\mathrm{a}\flen \\[1.5ex]
f_{v_0} + \frac{F^{\mathrm{CE}} - 0.95F^\mathrm{a} \flen }{\varepsilon F^\mathrm{a} \flen}(f_{v_1} - f_{v_0})\,, & 0.95F^\mathrm{a} \flen \leq F^{\mathrm{CE}}
\end{dcases}
\end{equation}
\end{document}
附录:如果您希望条件语句对不等式进行精确对齐,那么使用环境array
而不是dcases
环境会更容易。就我个人而言,我认为结果并不比上面的结果更好(即,使用环境dcases
和不完美的不等式对齐)。如果您好奇的话:@{}>{{}}c<{{}}@{}
构造用于将不等式符号居中设置,同时在其左侧和右侧分配适当数量的空格。
\documentclass{article}
\usepackage[a4paper,margin=2.5cm]{geometry} % choose paper size and margins
\usepackage{amsmath} % for \dfrac macro
\usepackage{array}
\def\flen{\bar{F}^\mathrm{M}_{\mathrm{len}}}
\def\finv{(\bar{F}^{\mathrm{M}}_{\mathrm{V}})^{-1}}
\begin{document}
\begin{equation}
\finv(F^{\mathrm{CE}},F^\mathrm{a})=
\left\{
\begin{array}{ >{\displaystyle}l @{\quad} r @{}>{{}}c<{{}}@{} c @{}>{{}}c<{{}}@{} l @{} }
\frac{F^{\mathrm{CE}}}{\varepsilon}\left(\frac{\varepsilon-F^{\mathrm{a}}}{F^{\mathrm{a}}+\varepsilon/A_{\mathrm{f}}+\xi}+{\frac{F^\mathrm{a}}{F^\mathrm{a}+\xi}}\right) - \frac{F^\mathrm{a}}{F^\mathrm{a}+\xi}\,,
& & & F^{\mathrm{CE}}& <&0 \\[4ex]
\frac{F^{\mathrm{CE}}-F^\mathrm{a}}{F^{\mathrm{a}}+F^{\mathrm{CE}}/A_{\mathrm{f}}+\xi}\,,
& 0 &\leq& F^{\mathrm{CE}} &<&F^\mathrm{\mathrm{a}} \\[4ex]
\frac{F^{\mathrm{CE}}-F^\mathrm{a}}{\dfrac{{(2+2/A_{\mathrm{f}})}{(F^\mathrm{a}\flen - F^{\mathrm{CE}})}}{\flen - 1}+\xi}\,,
& F^\mathrm{a} &\leq& F^{\mathrm{CE}} &<& 0.95F^\mathrm{a}\flen \\[7ex]
f_{v_0} + \frac{F^{\mathrm{CE}} - 0.95F^\mathrm{a} \flen }{\varepsilon F^\mathrm{a} \flen}(f_{v_1} - f_{v_0})\,,
& 0.95F^\mathrm{a} \flen & \leq & F^{\mathrm{CE}} \\
\end{array}\right.
\end{equation}
\end{document}
答案2
您可以使用empheq
包(加载amsmath
和mathtools
)和alignat*
环境:
\documentclass[a4paper]{article}
\usepackage[utf8]{inputenc}[1ex]
\usepackage[hmargin=2.5cm] {geometry}
\usepackage[overload]{empheq}
\usepackage{amsmath}
\usepackage{lmodern}
\def\flen{\bar{F}^\mathrm{M}_{\mathrm{len}}} \def\finv{{\bigl(\bar{F}^{\mathrm{M}}_{\mathrm{V}}}\bigr)^{-1}}
\begin{document}
\begin{alignat*}{2}[left ={\finv(F^{\mathrm{CE}},F^\mathrm{a})=\empheqlbrace}]%{align*}
& \dfrac{F^{\mathrm{CE}}}{\varepsilon}\left({\dfrac{\varepsilon-F^{\mathrm{a}}}{F^{\mathrm{a}} + \varepsilon/A_{\mathrm{f}}+\xi}+{\dfrac{F^\mathrm{a}}{F^\mathrm{a}+\xi}}}\right) - \dfrac{F^\mathrm{a}}{F^\mathrm{a}+\xi},\hskip-1em & F^{\mathrm{CE}} & <0 \\[1ex]
& \dfrac{F^{\mathrm{CE}}-F^\mathrm{a}}{F^{\mathrm{a}}+F^{\mathrm{CE}}/A_{\mathrm{f}}+\xi}, & 0\leq F^{\mathrm{CE}}& <F^\mathrm{\mathrm{a}} \\[1ex]
& \dfrac{F^{\mathrm{CE}}-F^\mathrm{a}}{\dfrac{{(2+2/A_{\mathrm{f}})}{(F^\mathrm{a}\flen - F^{\mathrm{CE}})}}{\flen - 1}+\xi}, & F^\mathrm{a} \leq F^{\mathrm{CE}} & < 0.95F^\mathrm{a}\flen \\[1ex]
& f_{v_0} + \dfrac{F^{\mathrm{CE}} - 0.95F^\mathrm{a} \flen }{\varepsilon F^\mathrm{a} \flen}(f_{v_1} - f_{v_0}), &0.95F^\mathrm{a} \flen & \leq F^{\mathrm{CE}}
\end{alignat*}
\end{document}
答案3
如果希望它们与左花括号对齐,则删除“&”符号,如果希望条件对齐,则在“,”前面使用“&”
\begin{document}
\begin{eqnarray}
\finv(F^{\mathrm{CE}},F^\mathrm{a})=
\begin{cases}
\dfrac{F^{\mathrm{CE}}}{\varepsilon}\left({\dfrac{\varepsilon-F^{\mathrm{a}}}{F^{\mathrm{a}}+\varepsilon/A_{\mathrm{f}}+\xi}+{\dfrac{F^\mathrm{a}}{F^\mathrm{a}+\xi}}}\right) - \dfrac{F^\mathrm{a}}{F^\mathrm{a}+\xi}&, F^{\mathrm{CE}} <0 \\
\nonumber \\
\dfrac{F^{\mathrm{CE}}-F^\mathrm{a}}{F^{\mathrm{a}}+F^{\mathrm{CE}}/A_{\mathrm{f}}+\xi}&, 0 \leq F^{\mathrm{CE}} <F^\mathrm{\mathrm{a}} \\
\nonumber \\
\dfrac{F^{\mathrm{CE}}-F^\mathrm{a}}{\dfrac{{(2+2/A_{\mathrm{f}})}{(F^\mathrm{a}\flen - F^{\mathrm{CE}})}}{\flen - 1}+\xi}&, F^\mathrm{a} \leq F^{\mathrm{CE}} < 0.95F^\mathrm{a}\flen \\
\nonumber \\
f_{v_0} + \dfrac{F^{\mathrm{CE}} - 0.95F^\mathrm{a} \flen }{\varepsilon F^\mathrm{a} \flen}(f_{v_1} - f_{v_0})&, 0.95F^\mathrm{a} \flen \leq F^{\mathrm{CE}}
\end{cases}
\end{eqnarray}
%--------------- 从这里开始是在编辑后添加的。
您可以在案例中使用表格,虽然不是很干净,但可以完成工作!
\begin{eqnarray}
\finv(F^{\mathrm{CE}},F^\mathrm{a})=
\begin{cases}
\begin{tabular}{lr}
$\dfrac{F^{\mathrm{CE}}}{\varepsilon}\left({\dfrac{\varepsilon-F^{\mathrm{a}}}{F^{\mathrm{a}}+\varepsilon/A_{\mathrm{f}}+\xi}+{\dfrac{F^\mathrm{a}}{F^\mathrm{a}+\xi}}}\right) - \dfrac{F^\mathrm{a}}{F^\mathrm{a}+\xi}$&, $F^{\mathrm{CE}} <0$ \\
%\nonumber \\
$\dfrac{F^{\mathrm{CE}}-F^\mathrm{a}}{F^{\mathrm{a}}+F^{\mathrm{CE}}/A_{\mathrm{f}}+\xi}$&, $0 \leq F^{\mathrm{CE}} <F^\mathrm{\mathrm{a}}$ \\
% \nonumber \\
$\dfrac{F^{\mathrm{CE}}-F^\mathrm{a}}{\dfrac{{(2+2/A_{\mathrm{f}})}{(F^\mathrm{a}\flen - F^{\mathrm{CE}})}}{\flen - 1}+\xi}$&, $F^\mathrm{a} \leq F^{\mathrm{CE}} < 0.95F^\mathrm{a}\flen $ \\
% \nonumber \\
$f_{v_0} + \dfrac{F^{\mathrm{CE}} - 0.95F^\mathrm{a} \flen }{\varepsilon F^\mathrm{a} \flen}(f_{v_1} - f_{v_0})$&, $0.95F^\mathrm{a} \flen \leq F^{\mathrm{CE}} $
\end{tabular}
\end{cases}
\end{eqnarray}