(1)AX
角C^{'}AC的角平分线必定是虚线线段。
(2)C^{'}X
必须画出一条线,而且那条线也必须是虚线。
\documentclass[11pt,a4paper]{article}
\usepackage{blindtext}
\usepackage{tikz}
\usepackage{tkz-euclide}
\usetkzobj{all}
\usepackage{color}
\begin{document}
\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(12,0){B}
\tkzDefPoint(3,7){C}
\tkzDefPoint(10,4){C^{'}}
\tkzLabelPoints[below](A)
\tkzLabelPoints[below](B)
\tkzLabelPoints[above](C)
\tkzLabelPoints[right](C^{'})
\tkzDrawSegment(A,B)
\tkzDrawSegment(A,C^{'})
\tkzDrawSegment(B,C^{'})
\tkzDrawSegment(A,C)
\tkzDrawSegment(B,C)
\tkzMarkSegment[color=red,pos=0.5,mark=|](A,B)
\tkzMarkSegment[color=red,pos=0.5,mark=||](A,C^{'})
\tkzMarkSegment[color=red,pos=0.5,mark=||](A,C)
\tkzDefLine[bisector](C^{'},A,C)
\tkzGetPoint{X}
\tkzDrawSegment[add=0pt and -273pt](A,X)
\tkzLabelLine[pos=0.45](A,X){X}
\tkzDrawSegment[dashed](C^{'},X)
\end{tikzpicture}
\end{document}
答案1
以下是相关内容:
\tkzDefLine[bisector](C^{'},A,C)
\tkzGetPoint{x}
\tkzInterLL(A,x)(C,B)
\tkzGetPoint{X}
求得的角平分线C^{'}AC
并得到其端点x
;然后求得和的X
交点。Ax
CB
代码:
\documentclass[11pt,a4paper]{article}
\usepackage{tkz-euclide}
\usetkzobj{all}
\begin{document}
\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(12,0){B}
\tkzDefPoint(3,7){C}
\tkzDefPoint(10,4){C^{'}}
\tkzLabelPoints[below](A)
\tkzLabelPoints[below](B)
\tkzLabelPoints[above](C)
\tkzLabelPoints[right](C^{'})
\tkzDrawSegment(A,B)
\tkzDrawSegment(A,C^{'})
\tkzDrawSegment(B,C^{'})
\tkzDrawSegment(A,C)
\tkzDrawSegment(B,C)
\tkzMarkSegment[color=red,pos=0.5,mark=|](A,B)
\tkzMarkSegment[color=red,pos=0.5,mark=||](A,C^{'})
\tkzMarkSegment[color=red,pos=0.5,mark=||](A,C)
\tkzDefLine[bisector](C^{'},A,C)
\tkzGetPoint{x}
\tkzInterLL(A,x)(C,B)
\tkzGetPoint{X}
\tkzLabelPoints[above](X)
\tkzDrawSegment[dashed](A,X)
\tkzDrawSegment[dashed](C^{'},X)
\end{tikzpicture}
\end{document}