从全局对齐和方程中删除水平空间

从全局对齐和方程中删除水平空间

我想在对齐环境中塞入尽可能多的方程式。我能够将边距设置为零,并删除方程式前后的空格。请参阅下面的示例代码。

但是,目前(默认情况下)alignequation环境会在我的方程式左侧插入大量空格。如何全局将此空间设置为零?

我无法在谷歌上找到答案,所以我希望你们中的一些人知道答案。

下面是一个例子。请注意,一旦编译完成,“Harmonic Oscillator” 字样就会拒绝挤到左边距:

\documentclass[9pt,norsk,a4paper]{article}
\usepackage[paper=a4paper, top=.1in,bottom=.1in,right=0.1in,left=0.1in]{geometry}
\usepackage[utf8]{inputenc}
\usepackage[norsk]{babel}
\usepackage{amsmath,amsthm}
\newcommand{\E}[1]{\left\langle #1 \right\rangle}
\def\dd #1;#2;{\frac{\mathrm{d} #1 }{\mathrm{d} #2 }}
\def\pp #1;#2;{\frac{\partial #1 }{\partial #2 }}

\setlength\parindent{0pt}
\begin{document}
\setlength{\abovedisplayskip}{0pt}
\setlength{\belowdisplayskip}{0pt}
\setlength{\abovedisplayshortskip}{0pt}
\setlength{\belowdisplayshortskip}{0pt}
\begin{align*}
\textbf{Harmonisk oscillator} & a  & \hat{a}_\pm = \frac{1}{(2\hbar \omega m)^{1/2}}\left(\mp \hbar \pp ;x; + m\omega \hat{x} \right) & \hat{x} = \left( \frac{\hbar}{2m\omega} \right)^{1/2}\left( a_+ + a_- \right) & \hat{p} = i \left( \frac{\hbar m \omega}{2} \right)\left( a_+-a_- \right) & \E{V} = \E{\frac{1}{2}m\omega^2x^2} & a_-\psi_0 = 0\\
\psi_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}e^{-m\omega x^2/(2 \hbar)}
\end{align*}
\begin{tabular}{l c r}
Variabel    &symbol  & observator\\
Posisjon: &$\hat{x}$ &$x$\\
bevegelsesmengde &$\hat{p}$ &$\frac{\hbar}{i} \pp;x;$\\
potensiell energi &$\hat{V}$ &$V(x)$\\
kinetisk energi &$\hat{K}$ &$-\frac{\hbar^2}{2m}\pp ^2;x^2;$\\
Hameltonian &$\hat{H}$ &$-\frac{\hbar^2}{2m} \pp ^2;x^2; + V(x)$\\
Total energi &$\hat{E}$ &$i \hbar \pp ;t;$
\end{tabular}
\end{document}

感谢您的时间。

亲切的问候,

马里乌斯

答案1

我认为你需要的是flalign*

\documentclass[9pt,norsk,a4paper]{article}
\usepackage[paper=a4paper, top=.1in,bottom=.1in,right=0.1in,left=0.1in]{geometry}
\usepackage[utf8]{inputenc}
\usepackage[norsk]{babel}
\usepackage{amsmath,amsthm}
\newcommand{\E}[1]{\left\langle #1 \right\rangle}
\def\dd #1;#2;{\frac{\mathrm{d} #1 }{\mathrm{d} #2 }}
\def\pp #1;#2;{\frac{\partial #1 }{\partial #2 }}

\setlength\parindent{0pt}
\begin{document}
\setlength{\abovedisplayskip}{0pt}
\setlength{\belowdisplayskip}{0pt}
\setlength{\abovedisplayshortskip}{0pt}
\setlength{\belowdisplayshortskip}{0pt}
\begin{flalign*}
&\intertext{\textbf{Harmonisk oscillator}}
& a   \hat{a}_\pm = \frac{1}{(2\hbar \omega m)^{1/2}}\left(\mp \hbar \pp ;x; + m\omega \hat{x} \right)  \hat{x} = \left( \frac{\hbar}{2m\omega} \right)^{1/2}\left( a_+ + a_- \right)  \hat{p} = i \left( \frac{\hbar m \omega}{2} \right)\left( a_+-a_- \right)  \E{V} = \E{\frac{1}{2}m\omega^2x^2}  a_-\psi_0 = 0 &\\
&\psi_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}e^{-m\omega x^2/(2 \hbar)}&
\end{flalign*}
\begin{tabular}{l c r}
Variabel    &symbol  & observator\\
Posisjon: &$\hat{x}$ &$x$\\
bevegelsesmengde &$\hat{p}$ &$\frac{\hbar}{i} \pp;x;$\\
potensiell energi &$\hat{V}$ &$V(x)$\\
kinetisk energi &$\hat{K}$ &$-\frac{\hbar^2}{2m}\pp ^2;x^2;$\\
Hameltonian &$\hat{H}$ &$-\frac{\hbar^2}{2m} \pp ^2;x^2; + V(x)$\\
Total energi &$\hat{E}$ &$i \hbar \pp ;t;$
\end{tabular}
\end{document}

在此处输入图片描述

相关内容