我正在尝试绘制 Ti 中的某个区域钾Z 使用从 Mathematica 导出的数据RegionPlot
。但 Ti钾Z\filldraw
命令给出了奇怪的输出。生成的 Ti 的问题钾Z 图片的问题是它没有生成平滑的区域并且由于某种原因有黑线遮挡图像。
从 Mathematica 导出的过程中可能出了问题。因此,我将包含用于生成图表的 Mathematica 代码并将其导出到文件中.txt
。
乳胶
\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{arrows}
\usetikzlibrary{calc,through,backgrounds}
\usepackage{pgfplots}
\usepackage{amsfonts}
\usepgfplotslibrary{fillbetween}
\pgfplotsset{compat=1.8}
\begin{document}
\begin{tikzpicture}[scale=2]
\filldraw[color=black, fill=blue!50, opacity = 1] plot coordinates {
(-0.473684160664820, -0.15789472022160686) (-0.3684210138504157, -0.15789472022160686) (-0.2631578670360113,
-0.15789472022160686) (-0.15789472022160686, -0.15789472022160686) (-0.5789473074792245, -0.052631573407202425)
(-0.4736841606648201, -0.052631573407202425) (-0.3684210138504157, -0.052631573407202425) (-0.2631578670360113,
-0.052631573407202425) (-0.15789472022160686, -0.052631573407202425) (-0.052631573407202425, -0.052631573407202425)
(-0.5789473074792245, 0.05263157340720201) (-0.4736841606648201, 0.05263157340720201) (-0.3684210138504157,
0.05263157340720201) (-0.2631578670360113, 0.05263157340720201) (-0.15789472022160686, 0.05263157340720201)
(-0.052631573407202425, 0.05263157340720201) (-0.4736841606648201, 0.15789472022160644) (-0.3684210138504157,
0.15789472022160644) (-0.2631578670360113, 0.15789472022160644) (-0.15789472022160686, 0.15789472022160644)
(-0.4210525872576179, -0.2105262936288091) (-0.5263157340720224, -0.10526314681440464) (-0.3157894404432135,
-0.2105262936288091) (-0.2105262936288091, -0.2105262936288091) (-0.10526314681440464, -0.10526314681440464)
(-0.5789473074792245, -0.10526314681440464) (-0.6315788808864267, 0) (-0.5263157340720224,
0.10526314681440423) (-0.10526314681440464, 0.10526314681440423) (-0.052631573407202425, 0.10526314681440423)
(-0.4210525872576179, 0.21052629362880865) (-0.3157894404432135, 0.21052629362880865) (-0.2105262936288091,
0.21052629362880865) (-0.15789472022160686, 0.21052629362880865) (-0.4736841606648201, -0.2105262936288091)
(-0.5263157340720224, -0.15789472022160686) (-0.3684210138504157, -0.2105262936288091) (-0.2631578670360113,
-0.2105262936288091) (-0.15789472022160686, -0.2105262936288091) (-0.10526314681440464, -0.15789472022160686)
(-0.6315788808864267, -0.052631573407202425) (-0.052631573407202425, -0.10526314681440464) (-0.6315788808864267,
0.05263157340720201) (-0.5789473074792245, 0.10526314681440423) (-0.5263157340720224, 0.15789472022160644)
(-0.10526314681440464, 0.15789472022160644) (-0.4736841606648201, 0.21052629362880865) (-0.3684210138504157,
0.21052629362880865) (-0.2631578670360113, 0.21052629362880865) (-0.49999994736842124, -0.18421050692520796)
(-0.6052630941828256, -0.07894736011080353) (-0.07894736011080353, 0.13157893351800534) (-0.5526315207756234,
-0.13157893351800576) (-0.13157893351800576, -0.18421050692520796) (-0.07894736011080353, -0.13157893351800576)
(-0.026315786703601317, -0.07894736011080353) (-0.6052630941828256, 0.07894736011080311) (-0.026315786703601317,
0.07894736011080311) (-0.5526315207756234, 0.13157893351800534) (-0.49999994736842124, 0.18421050692520755)
(-0.13157893351800576, 0.18421050692520755) (-0.39473680055401683, -0.2368420803324102) (-0.34210522714681457,
-0.2368420803324102) (-0.2894736537396124, -0.2368420803324102) (-0.2368420803324102, -0.2368420803324102)
(-0.18421050692520796, -0.2368420803324102) (-0.10526314681440464, 0)
(-0.052631573407202425, 0) (-0.026315786703601317, -0.026315786703601317)
(-0.026315786703601317, 0.0263157867036009) (-0.34210522714681457, 0.23684208033240975) (-0.2368420803324102,
0.23684208033240975) (-0.18421050692520796, 0.23684208033240975) (-0.026315786703601317, -0.052631573407202425)
(-0.026315786703601317, 0.05263157340720201) (-0.39473680055401683, 0.23684208033240975) (-0.3684210138504157,
0.23684208033240975) (-0.2894736537396124, 0.23684208033240975) (-0.2631578670360113, 0.23684208033240975)
(-0.4736841606648201, -0.22080589780990328) (-0.3684210138504157, -0.25421461139845936) (-0.2631578670360113,
-0.2582750550499915) (-0.15789472022160686, -0.22985194948926613) (-0.060444072584834, -0.15789472022160686)
(-0.5789473074792245, -0.1484374843750002) (-0.052631573407202425, -0.1484374843750002) (-0.060444072584834,
0.15789472022160644) (-0.05694900716326198, 0.15357728646554686) (-0.3794201903241865, 0.25215869056224005)
(-0.26762949485478726, 0.2586862392172349) (-0.18153780983812345, 0.23951477741949423) (-0.44387330853964696,
-0.23334701491083817) (-0.1120476855739268, -0.20374175486928692) (-0.6138979616949447, -0.10526314681440464)
(-0.6464329089281079, -0.014854028041681303) (-0.6464329089281079, 0.014854028041680886) (-0.017475327107860317,
-0.08778781970654453) (-0.00020559208362209183, -0.00020559208362209183) (-0.00020559208362209183,
0.0002055920836216755) (-0.6206825004544669, 0.0943667663824444) (-0.017475327107860317, 0.08778781970654412)
(-0.514596985305575, 0.19880754486236127) (-0.052631573407202425, 0.14843748437499982) (-0.0252878262854919,
0.10526314681440423) (-0.1120476855739268, 0.20374175486928647) (-0.44387330853964696, 0.23334701491083773)
(-0.15789472022160686, 0.22985194948926568) (-0.1221216976713991, 0.21052629362880865) (-0.49426906803746123,
-0.2105262936288091) (-0.569181683507185, -0.15789472022160686) (-0.5263157340720224, -0.191200637768352)
(-0.1221216976713991, -0.2105262936288091) (-0.10526314681440464, -0.19911593298779456) (-0.6390829919386254,
-0.052631573407202425) (-0.6315788808864267, -0.07277959760214701) (-0.0252878262854919, -0.10526314681440464)
(-0.006167762508656718, -0.052631573407202425) (-0.6390829919386254, 0.05263157340720201) (-0.6315788808864267,
0.0727795976021466) (-0.006167762508656718, 0.05263157340720201) (-0.5789473074792245, 0.14843748437499982)
(-0.6138979616949447, 0.10526314681440423) (-0.569181683507185, 0.15789472022160644) (-0.5263157340720224,
0.1912006377683516) (-0.10526314681440464, 0.19911593298779412) (-0.4736841606648201, 0.22080589780990284)
(-0.49426906803746123, 0.21052629362880865) (-0.514596985305575, -0.1988075448623617) (-0.6206825004544669,
-0.09436676638244482) (-0.5742186895559211, -0.15316610229830355) (-0.05694900716326198, -0.1535772864655473)
(-0.008120887303064612, -0.060752460710266826) (-0.008120887303064612, 0.06075246071026641) (-0.5742186895559211,
0.1531661022983031) (-0.4210525872576179, 0.2411595140884693) (-0.3157894404432135, 0.2599197917189662)
(-0.2105262936288091, 0.248766421182479) (-0.4210525872576179, -0.24115951408846975) (-0.4553864652224725,
-0.22882398907115672) (-0.3794201903241865, -0.2521586905622405) (-0.40398844431700154, -0.24609372409539496)
(-0.3157894404432135, -0.2599197917189666) (-0.36071131071459506, -0.25544816390019065) (-0.3192845058647855,
-0.2596628016144392) (-0.26762949485478726, -0.2586862392172353) (-0.31260276314707436, -0.2599711897398721)
(-0.2105262936288091, -0.24876642118247944) (-0.2576068807782204, -0.2576068807782204) (-0.22224504239525647,
-0.2514391182695639) (-0.18153780983812345, -0.23951477741949467) (-0.19006988130843167, -0.24270145471563387)
(-0.6467926950744461, 0) (-0.6419098830884263, -0.042300571205202774) (-0.6419098830884263,
0.04230057120520236) (-0.0004111841672439755, 0) (-0.0051398020905473,
-0.047491771316655336) (-0.0051398020905473, 0.04749177131665492) (-0.4553864652224725, 0.22882398907115628)
(-0.36071131071459506, 0.2554481639001902) (-0.3192845058647855, 0.2596628016144388) (-0.2576068807782204,
0.25760688077821997) (-0.22224504239525647, 0.25143911826956344) (-0.19006988130843167, 0.24270145471563342)
(-0.40398844431700154, 0.2460937240953945) (-0.3684210138504157, 0.2542146113984589) (-0.31260276314707436,
0.25997118973987166) (-0.2631578670360113, 0.25827505504999104) (-0.48046869942434234, -0.21731083238833127)
(-0.14494241895342821, -0.22347859489698776) (-0.08259661959509196, -0.1805612474409195) (-0.5993009237577911,
-0.12561676309297112) (-0.03492495520526769, -0.12296976501633936) (-0.08259661959509196, 0.18056124744091911)
(-0.03492495520526769, 0.12296976501633894) (-0.5458469820161012, -0.1774259681656858) (-0.6371298671442176,
-0.058182559664993284) (-0.6371298671442176, 0.05818255966499287) (-0.5458469820161012, 0.17742596816568537)
(-0.5993009237577911, 0.1256167630929707) (-0.48046869942434234, 0.21731083238833082)};
\end{tikzpicture}
\end{document}
Mathematica 代码
\[Mu] = {1, 2, 3, 4, 5, 6};
plot = RegionPlot[
Product[Abs[1 + \[Mu] (x + I y)]^1, {\[Mu], 1, 6}] < 1,
{x, -1, 1}, {y, -1, 1},
PlotRange -> Automatic,
GridLines -> Automatic,
AspectRatio -> Automatic]
Export[NotebookDirectory[] <> "dice.txt", plot]
这是我想要重现的 Mathematica 图:
这里有一个关联以防dice.txt
您没有数学。
我还尝试在 MATLAB 中绘制这些点的散点图,得到了以下结果:
所以,显然我并不是只处理边界上的坐标。
答案1
首先是严重的问题。坐标相当混乱。对于以下示例,我有:
- 对点进行排序,
- 删除内部点,并添加一个相同的点X协调,
- 手动删除剩余的内部点,
- 添加
closed hobby
以获得更平滑的曲线。
完整示例文件:
\documentclass{article}
\usepackage{tikz}
\usetikzlibrary{hobby}
\usepackage{pgfplots}
\pgfplotsset{compat=1.12}
\usepackage[active, tightpage]{preview}
\PreviewEnvironment[{[]}]{tikzpicture}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
xmin=-.66,
xmax=.02,
ymin=-.27,
ymax=.27,
grid,
]
\addplot[
closed hobby,
thick,
blue,
fill=blue,
fill opacity=.25,
] coordinates {
(-0.6464329089281079, -0.014854028041681303)
(-0.6419098830884263, -0.042300571205202774)
(-0.6390829919386254, -0.052631573407202425)
(-0.6371298671442176, -0.058182559664993284)
(-0.6315788808864267, -0.07277959760214701)
(-0.6206825004544669, -0.09436676638244482)
(-0.6138979616949447, -0.10526314681440464)
%(-0.6052630941828256, -0.07894736011080353)
(-0.5993009237577911, -0.12561676309297112)
(-0.5789473074792245, -0.1484374843750002)
(-0.5742186895559211, -0.15316610229830355)
(-0.569181683507185, -0.15789472022160686)
%(-0.5526315207756234, -0.13157893351800576)
(-0.5458469820161012, -0.1774259681656858)
(-0.5263157340720224, -0.191200637768352)
(-0.514596985305575, -0.1988075448623617)
%(-0.49999994736842124, -0.18421050692520796)
(-0.49426906803746123, -0.2105262936288091)
(-0.48046869942434234, -0.21731083238833127)
(-0.4736841606648201, -0.22080589780990328)
%(-0.473684160664820, -0.15789472022160686)
(-0.4553864652224725, -0.22882398907115672)
(-0.44387330853964696, -0.23334701491083817)
(-0.4210525872576179, -0.24115951408846975)
(-0.40398844431700154, -0.24609372409539496)
%(-0.39473680055401683, -0.2368420803324102)
(-0.3794201903241865, -0.2521586905622405)
(-0.3684210138504157, -0.25421461139845936)
(-0.36071131071459506, -0.25544816390019065)
%(-0.34210522714681457, -0.2368420803324102)
(-0.3192845058647855, -0.2596628016144392)
(-0.3157894404432135, -0.2599197917189666)
(-0.31260276314707436, -0.2599711897398721)
%(-0.2894736537396124, -0.2368420803324102)
(-0.26762949485478726, -0.2586862392172353)
(-0.2631578670360113, -0.2582750550499915)
(-0.2576068807782204, -0.2576068807782204)
%(-0.2368420803324102, -0.2368420803324102)
(-0.22224504239525647, -0.2514391182695639)
(-0.2105262936288091, -0.24876642118247944)
(-0.19006988130843167, -0.24270145471563387)
%(-0.18421050692520796, -0.2368420803324102)
(-0.18153780983812345, -0.23951477741949467)
(-0.15789472022160686, -0.22985194948926613)
(-0.14494241895342821, -0.22347859489698776)
%(-0.13157893351800576, -0.18421050692520796)
(-0.1221216976713991, -0.2105262936288091)
(-0.1120476855739268, -0.20374175486928692)
(-0.10526314681440464, -0.19911593298779456)
(-0.08259661959509196, -0.1805612474409195)
%(-0.07894736011080353, -0.13157893351800576)
(-0.060444072584834, -0.15789472022160686)
(-0.05694900716326198, -0.1535772864655473)
(-0.052631573407202425, -0.1484374843750002)
(-0.03492495520526769, -0.12296976501633936)
%(-0.026315786703601317, -0.07894736011080353)
(-0.0252878262854919, -0.10526314681440464)
(-0.017475327107860317, -0.08778781970654453)
(-0.008120887303064612, -0.060752460710266826)
(-0.006167762508656718, -0.052631573407202425)
(-0.0051398020905473, -0.047491771316655336)
%(-0.00020559208362209183, -0.00020559208362209183)
%(-0.00020559208362209183, 0.0002055920836216755)
(-0.0004111841672439755, 0)
(-0.0051398020905473, 0.04749177131665492)
(-0.006167762508656718, 0.05263157340720201)
(-0.008120887303064612, 0.06075246071026641)
(-0.017475327107860317, 0.08778781970654412)
(-0.0252878262854919, 0.10526314681440423)
%(-0.026315786703601317, 0.07894736011080311)
(-0.03492495520526769, 0.12296976501633894)
(-0.052631573407202425, 0.14843748437499982)
(-0.05694900716326198, 0.15357728646554686)
(-0.060444072584834, 0.15789472022160644)
%(-0.07894736011080353, 0.13157893351800534)
(-0.08259661959509196, 0.18056124744091911)
(-0.10526314681440464, 0.19911593298779412)
(-0.1120476855739268, 0.20374175486928647)
(-0.1221216976713991, 0.21052629362880865)
%(-0.13157893351800576, 0.18421050692520755)
(-0.15789472022160686, 0.22985194948926568)
(-0.18153780983812345, 0.23951477741949423)
%(-0.18421050692520796, 0.23684208033240975)
(-0.19006988130843167, 0.24270145471563342)
(-0.2105262936288091, 0.248766421182479)
(-0.22224504239525647, 0.25143911826956344)
%(-0.2368420803324102, 0.23684208033240975)
(-0.2576068807782204, 0.25760688077821997)
(-0.2631578670360113, 0.25827505504999104)
(-0.26762949485478726, 0.2586862392172349)
%(-0.2894736537396124, 0.23684208033240975)
(-0.31260276314707436, 0.25997118973987166)
(-0.3157894404432135, 0.2599197917189662)
(-0.3192845058647855, 0.2596628016144388)
%(-0.34210522714681457, 0.23684208033240975)
(-0.36071131071459506, 0.2554481639001902)
(-0.3684210138504157, 0.2542146113984589)
(-0.3794201903241865, 0.25215869056224005)
%(-0.39473680055401683, 0.23684208033240975)
(-0.40398844431700154, 0.2460937240953945)
(-0.4210525872576179, 0.2411595140884693)
(-0.44387330853964696, 0.23334701491083773)
(-0.4553864652224725, 0.22882398907115628)
(-0.4736841606648201, 0.22080589780990284)
(-0.48046869942434234, 0.21731083238833082)
(-0.49426906803746123, 0.21052629362880865)
%(-0.49999994736842124, 0.18421050692520755)
(-0.514596985305575, 0.19880754486236127)
(-0.5263157340720224, 0.1912006377683516)
(-0.5458469820161012, 0.17742596816568537)
%(-0.5526315207756234, 0.13157893351800534)
(-0.569181683507185, 0.15789472022160644)
(-0.5742186895559211, 0.1531661022983031)
(-0.5789473074792245, 0.14843748437499982)
(-0.5993009237577911, 0.1256167630929707)
%(-0.6052630941828256, 0.07894736011080311)
(-0.6138979616949447, 0.10526314681440423)
(-0.6206825004544669, 0.0943667663824444)
(-0.6315788808864267, 0.0727795976021466)
(-0.6371298671442176, 0.05818255966499287)
(-0.6390829919386254, 0.05263157340720201)
(-0.6419098830884263, 0.04230057120520236)
(-0.6464329089281079, 0.014854028041680886)
(-0.6467926950744461, 0)
};
\end{axis}
\end{tikzpicture}
\end{document}
啊,现在创造的机会艺术!
第一个例子应用了平滑处理并调整了张力。同时,比例因子也随着张力的增加而减小,以保持图像形状大致相等:
\documentclass{article}
\usepackage{tikz}
\usepackage[active, tightpage]{preview}
\PreviewEnvironment[{[]}]{tikzpicture}
\begin{document}
\newcommand*{\img}{%
\begin{tikzpicture}
\def\w{1}
\def\h{.52}
\useasboundingbox (-1.3*\w, -\h) rectangle (1.05*\w, \h);
\tikzset{scale=\scale}
\filldraw[line width=.03pt, color=black, fill=blue!50]
plot[smooth, tension=\tension] coordinates {
% coordinates from the question
};
\end{tikzpicture}%
}
\foreach \i in {0, .1, ..., 5.9} {
\pgfmathsetmacro\tension{exp(\i)-1}%
\pgfmathsetmacro\scale{2/(\tension/4.1 + 1)}%
\img
}
\end{document}
不改变比例因子的第二个艺术示例:
\documentclass{article}
\usepackage{tikz}
\usepackage[active, tightpage]{preview}
\PreviewEnvironment[{[]}]{tikzpicture}
\begin{document}
\newcommand*{\img}[1]{%
\begin{tikzpicture}[scale=1]
\def\w{10}
\def\h{10}
\useasboundingbox (-\w, -\h) rectangle (\w, \h);
\filldraw[line width=.03pt, color=black, fill=blue!50, overlay]
plot[smooth, tension=#1] coordinates {
% coordinates from the question
};
\end{tikzpicture}%
}
\foreach \i in {0, .1, ..., 5.9} {
\pgfmathsetmacro\tension{exp(\i)-1}%
\img\tension
}
\end{document}
第三个示例是具有排序坐标的图像:
\documentclass{article}
\usepackage{tikz}
\usepackage[active, tightpage]{preview}
\PreviewEnvironment[{[]}]{tikzpicture}
\begin{document}
\begin{tikzpicture}
\draw[line width=.1pt, scale=4]
plot coordinates {
(-0.00020559208362209183, -0.00020559208362209183)
(-0.0051398020905473, -0.047491771316655336)
(-0.006167762508656718, -0.052631573407202425)
(-0.008120887303064612, -0.060752460710266826)
(-0.017475327107860317, -0.08778781970654453)
(-0.0252878262854919, -0.10526314681440464)
(-0.026315786703601317, -0.026315786703601317)
(-0.026315786703601317, -0.052631573407202425)
(-0.026315786703601317, -0.07894736011080353)
(-0.03492495520526769, -0.12296976501633936)
(-0.052631573407202425, -0.052631573407202425)
(-0.052631573407202425, -0.10526314681440464)
(-0.052631573407202425, -0.1484374843750002)
(-0.05694900716326198, -0.1535772864655473)
(-0.060444072584834000, -0.15789472022160686)
(-0.078947360110803530, -0.13157893351800576)
(-0.08259661959509196, -0.1805612474409195)
(-0.10526314681440464, -0.19911593298779456)
(-0.105263146814404640, -0.10526314681440464)
(-0.105263146814404640, -0.15789472022160686)
(-0.112047685573926800, -0.20374175486928692)
(-0.1221216976713991, -0.2105262936288091)
(-0.131578933518005760, -0.18421050692520796)
(-0.14494241895342821, -0.22347859489698776)
(-0.157894720221606860, -0.052631573407202425)
(-0.157894720221606860, -0.15789472022160686)
(-0.157894720221606860, -0.2105262936288091)
(-0.157894720221606860, -0.22985194948926613)
(-0.18153780983812345, -0.23951477741949467)
(-0.184210506925207960, -0.2368420803324102)
(-0.19006988130843167, -0.24270145471563387)
(-0.2105262936288091, -0.24876642118247944)
(-0.210526293628809100, -0.2105262936288091)
(-0.22224504239525647, -0.2514391182695639)
(-0.236842080332410200, -0.2368420803324102)
(-0.2576068807782204, -0.2576068807782204)
(-0.263157867036011300, -0.052631573407202425)
(-0.263157867036011300, -0.15789472022160686)
(-0.263157867036011300, -0.2105262936288091)
(-0.263157867036011300, -0.2582750550499915)
(-0.26762949485478726, -0.2586862392172353)
(-0.289473653739612400, -0.2368420803324102)
(-0.31260276314707436, -0.2599711897398721)
(-0.3157894404432135, -0.2599197917189666)
(-0.315789440443213500, -0.2105262936288091)
(-0.3192845058647855, -0.2596628016144392)
(-0.342105227146814570, -0.2368420803324102)
(-0.36071131071459506, -0.25544816390019065)
(-0.368421013850415700, -0.052631573407202425)
(-0.368421013850415700, -0.15789472022160686)
(-0.368421013850415700, -0.2105262936288091)
(-0.368421013850415700, -0.25421461139845936)
(-0.3794201903241865, -0.2521586905622405)
(-0.394736800554016830, -0.2368420803324102)
(-0.40398844431700154, -0.24609372409539496)
(-0.4210525872576179, -0.24115951408846975)
(-0.421052587257617900, -0.2105262936288091)
(-0.443873308539646960, -0.23334701491083817)
(-0.4553864652224725, -0.22882398907115672)
(-0.473684160664820000, -0.15789472022160686)
(-0.473684160664820100, -0.052631573407202425)
(-0.473684160664820100, -0.2105262936288091)
(-0.473684160664820100, -0.22080589780990328)
(-0.48046869942434234, -0.21731083238833127)
(-0.49426906803746123, -0.2105262936288091)
(-0.499999947368421240, -0.18421050692520796)
(-0.514596985305575, -0.1988075448623617)
(-0.5263157340720224, -0.191200637768352)
(-0.526315734072022400, -0.10526314681440464)
(-0.526315734072022400, -0.15789472022160686)
(-0.5458469820161012, -0.1774259681656858)
(-0.552631520775623400, -0.13157893351800576)
(-0.569181683507185, -0.15789472022160686)
(-0.5742186895559211, -0.15316610229830355)
(-0.578947307479224500, -0.052631573407202425)
(-0.578947307479224500, -0.10526314681440464)
(-0.578947307479224500, -0.1484374843750002)
(-0.5993009237577911, -0.12561676309297112)
(-0.605263094182825600, -0.07894736011080353)
(-0.613897961694944700, -0.10526314681440464)
(-0.6206825004544669, -0.09436676638244482)
(-0.6315788808864267, -0.07277959760214701)
(-0.631578880886426700, -0.052631573407202425)
(-0.6371298671442176, -0.058182559664993284)
(-0.6390829919386254, -0.052631573407202425)
(-0.6419098830884263, -0.042300571205202774)
(-0.646432908928107900, -0.014854028041681303)
(-0.6467926950744461, 0)
(-0.646432908928107900, 0.014854028041680886)
(-0.6419098830884263, 0.04230057120520236)
(-0.6390829919386254, 0.05263157340720201)
(-0.6371298671442176, 0.05818255966499287)
(-0.631578880886426700, 0.05263157340720201)
(-0.631578880886426700, 0)
(-0.6315788808864267, 0.0727795976021466)
(-0.6206825004544669, 0.0943667663824444)
(-0.6138979616949447, 0.10526314681440423)
(-0.605263094182825600, 0.07894736011080311)
(-0.5993009237577911, 0.1256167630929707)
(-0.578947307479224500, 0.10526314681440423)
(-0.578947307479224500, 0.05263157340720201)
(-0.5789473074792245, 0.14843748437499982)
(-0.5742186895559211, 0.1531661022983031)
(-0.569181683507185, 0.15789472022160644)
(-0.552631520775623400, 0.13157893351800534)
(-0.5458469820161012, 0.17742596816568537)
(-0.526315734072022400, 0.15789472022160644)
(-0.526315734072022400, 0.10526314681440423)
(-0.5263157340720224, 0.1912006377683516)
(-0.514596985305575, 0.19880754486236127)
(-0.499999947368421240, 0.18421050692520755)
(-0.49426906803746123, 0.21052629362880865)
(-0.48046869942434234, 0.21731083238833082)
(-0.473684160664820100, 0.21052629362880865)
(-0.473684160664820100, 0.15789472022160644)
(-0.473684160664820100, 0.05263157340720201)
(-0.4736841606648201, 0.22080589780990284)
(-0.4553864652224725, 0.22882398907115628)
(-0.44387330853964696, 0.23334701491083773)
(-0.421052587257617900, 0.21052629362880865)
(-0.4210525872576179, 0.2411595140884693)
(-0.40398844431700154, 0.2460937240953945)
(-0.394736800554016830, 0.23684208033240975)
(-0.379420190324186500, 0.25215869056224005)
(-0.368421013850415700, 0.23684208033240975)
(-0.368421013850415700, 0.21052629362880865)
(-0.368421013850415700, 0.15789472022160644)
(-0.368421013850415700, 0.05263157340720201)
(-0.3684210138504157, 0.2542146113984589)
(-0.36071131071459506, 0.2554481639001902)
(-0.342105227146814570, 0.23684208033240975)
(-0.3192845058647855, 0.2596628016144388)
(-0.315789440443213500, 0.21052629362880865)
(-0.3157894404432135, 0.2599197917189662)
(-0.31260276314707436, 0.25997118973987166)
(-0.289473653739612400, 0.23684208033240975)
(-0.267629494854787260, 0.2586862392172349)
(-0.263157867036011300, 0.23684208033240975)
(-0.263157867036011300, 0.21052629362880865)
(-0.263157867036011300, 0.15789472022160644)
(-0.263157867036011300, 0.05263157340720201)
(-0.2631578670360113, 0.25827505504999104)
(-0.2576068807782204, 0.25760688077821997)
(-0.236842080332410200, 0.23684208033240975)
(-0.22224504239525647, 0.25143911826956344)
(-0.210526293628809100, 0.21052629362880865)
(-0.2105262936288091, 0.248766421182479)
(-0.19006988130843167, 0.24270145471563342)
(-0.184210506925207960, 0.23684208033240975)
(-0.181537809838123450, 0.23951477741949423)
(-0.157894720221606860, 0.21052629362880865)
(-0.157894720221606860, 0.15789472022160644)
(-0.157894720221606860, 0.05263157340720201)
(-0.15789472022160686, 0.22985194948926568)
(-0.131578933518005760, 0.18421050692520755)
(-0.1221216976713991, 0.21052629362880865)
(-0.1120476855739268, 0.20374175486928647)
(-0.105263146814404640, 0.15789472022160644)
(-0.105263146814404640, 0.10526314681440423)
(-0.105263146814404640, 0)
(-0.10526314681440464, 0.19911593298779412)
(-0.08259661959509196, 0.18056124744091911)
(-0.078947360110803530, 0.13157893351800534)
(-0.060444072584834000, 0.15789472022160644)
(-0.056949007163261980, 0.15357728646554686)
(-0.052631573407202425, 0.14843748437499982)
(-0.052631573407202425, 0.10526314681440423)
(-0.052631573407202425, 0.05263157340720201)
(-0.052631573407202425, 0)
(-0.03492495520526769, 0.12296976501633894)
(-0.026315786703601317, 0.07894736011080311)
(-0.026315786703601317, 0.05263157340720201)
(-0.026315786703601317, 0.0263157867036009)
(-0.0252878262854919, 0.10526314681440423)
(-0.017475327107860317, 0.08778781970654412)
(-0.008120887303064612, 0.06075246071026641)
(-0.006167762508656718, 0.05263157340720201)
(-0.0051398020905473, 0.04749177131665492)
(-0.0004111841672439755, 0)
(-0.00020559208362209183, 0.0002055920836216755)
};
\end{tikzpicture}
\end{document}