\documentclass[11pt]{article}
\begin{document}
The above equations on application of Laplace Transform become:
$$sL_1\hat{i}_{L1}(s) = D\cdot \hat{v}_{C1}(s) + D\cdot \hat{v}_{C2}(s) - D\prime \cdot \hat{v}_g(s) + (C_{C1} + V_{C2} - V_g + V_D)\cdot \hat{d}(s)$$ $$sL_2\hat{i}_{L2}(s) = -D\prime \cdot \hat{v}_{C1}(s) + D\cdot \hat{v}+{C2}(s) + D\prime \cdot \hat{v}_g(s) + (C_{C1} + V_{C2} - V_g + V_D)\cdot \hat{d}(s)$$ $$sC_1\hat{v}_{C1}(s) = -D\cdot \hat{i}_{L1}(s)+ D\prime \cdot \hat{i}_{L2}(s) + (-I_{L1} -I_{L2} - I_1)\cdot \hat{d}(s) -D\prime \cdot \hat{i}_l(s)$$ $$sC_1\hat{v}_{C1}(s) = D\prime \cdot \hat{i}_{L1}(s)- D\cdot \hat{i}_{L2}(s) + (-I_{L1} -I_{L2} - I_1)\cdot \hat{d}(s) -D\prime \cdot \hat{i}_l(s)$$ $$sL_l\hat{i}_l(s) = D\prime \cdot \hat{c}_{C1}(s) + D\prime \cot \hat{v}_{C2}(s) - D\prime \cdot \hat{v}_g(s) +(V_g - V_D - V_{C1} - V_{C2})\cdot \hat{d}(s) - R_l \cdot \hat{i}_l(s)$$
\end{document}
错误:
181
Underfull \hbox (badness 10000) in paragraph at lines 181--181
181
Overfull \hbox (22.63293pt too wide) detected at line 181
答案1
$$
根本不要在 LaTeX 中使用,(LaTeX 语法是\[
),但也不要一个接一个地使用显示数学环境,而是使用多行显示,例如align
。
也使用'
not\prime
来获取上标素数。
\documentclass[11pt]{article}
\usepackage{amsmath}
\begin{document}
The above equations on application of Laplace Transform become:
\begin{align*}
sL_1\hat{i}_{L1}(s) &=
\begin{aligned}[t]
D\cdot \hat{v}_{C1}(s) + D\cdot \hat{v}_{C2}(s) - D' \cdot \hat{v}_g(s) + {}\\
(C_{C1} + V_{C2} - V_g + V_D)\cdot \hat{d}(s)
\end{aligned}\\
sL_2\hat{i}_{L2}(s) &=
\begin{aligned}[t]
-D' \cdot \hat{v}_{C1}(s) + D\cdot \hat{v}+{C2}(s) + D' \cdot \hat{v}_g(s) + {}\\
(C_{C1} + V_{C2} - V_g + V_D)\cdot \hat{d}(s)
\end{aligned}\\
sC_1\hat{v}_{C1}(s) &= -D\cdot \hat{i}_{L1}(s)+ D' \cdot \hat{i}_{L2}(s) + (-I_{L1} -I_{L2} - I_1)\cdot \hat{d}(s) -D' \cdot \hat{i}_l(s)\\
sC_1\hat{v}_{C1}(s) &= D' \cdot \hat{i}_{L1}(s)- D\cdot \hat{i}_{L2}(s) + (-I_{L1} -I_{L2} - I_1)\cdot \hat{d}(s) -D' \cdot \hat{i}_l(s)\\
sL_l\hat{i}_l(s) &=
\begin{aligned}[t]D' \cdot \hat{c}_{C1}(s) + D' \cot \hat{v}_{C2}(s) - D' \cdot \hat{v}_g(s) +{}\\
(V_g - V_D - V_{C1} - V_{C2})\cdot \hat{d}(s) - R_l \cdot \hat{i}_l(s)
\end{aligned}
\end{align*}
\end{document}
一种可能的变体,其中所有方程都被拆分以使宽度尽可能小;为了更好地区分各个方程,在它们之间添加了一些垂直空间。
\documentclass[11pt]{article}
\usepackage{amsmath}
\begin{document}
The above equations on application of Laplace Transform become
\begin{align*}
sL_1\hat{i}_{L1}(s) &=
\!\begin{aligned}[t]
&D\cdot \hat{v}_{C1}(s) + D\cdot \hat{v}_{C2}(s) - D' \cdot \hat{v}_g(s) \\
&\qquad + (C_{C1} + V_{C2} - V_g + V_D)\cdot \hat{d}(s)
\end{aligned}
\\[1\jot]
sL_2\hat{i}_{L2}(s) &=
\!\begin{aligned}[t]
&{-}D' \cdot \hat{v}_{C1}(s) + D\cdot \hat{v}+{C2}(s) + D' \cdot \hat{v}_g(s) \\
&\qquad + (C_{C1} + V_{C2} - V_g + V_D)\cdot \hat{d}(s)
\end{aligned}
\\[1\jot]
sC_1\hat{v}_{C1}(s) &=
\!\begin{aligned}[t]
&{-}D\cdot \hat{i}_{L1}(s)+ D' \cdot \hat{i}_{L2}(s) \\
&\qquad + (-I_{L1} -I_{L2} - I_1)\cdot \hat{d}(s) -D' \cdot \hat{i}_l(s)
\end{aligned}
\\[1\jot]
sC_1\hat{v}_{C1}(s) &=
\!\begin{aligned}[t]
&D' \cdot \hat{i}_{L1}(s)- D\cdot \hat{i}_{L2}(s) \\
&\qquad + (-I_{L1} -I_{L2} - I_1)\cdot \hat{d}(s) -D' \cdot \hat{i}_l(s)
\end{aligned}
\\[1\jot]
sL_l\hat{i}_l(s) &=
\!\begin{aligned}[t]
&D' \cdot \hat{c}_{C1}(s) + D' \cot \hat{v}_{C2}(s) - D' \cdot \hat{v}_g(s) \\
&\qquad +(V_g - V_D - V_{C1} - V_{C2})\cdot \hat{d}(s) - R_l \cdot \hat{i}_l(s)
\end{aligned}
\end{align*}
\end{document}