我正在使用 IEEEtran 文档类来生成 PDF 文件,以便它有两列,但现在我得到了一个很长的方程式,我无法将其放入两列中的一列。因此,我在方程式的开头使用了 \onecolumn,在方程式的结尾使用了 \twocolumn,如下所示:
\documentclass[journal]{IEEEtran}
\begin{document}
...
\onecolumn
\begin{align}
T\triangleq{} &
\int_{0}^{\infty}
\frac
{\gamma^{k+m_2-1}\exp\Bigl(-\frac{m_2\gamma}{\bar\gamma_2}\Bigr)}
{1+\Bigl(\frac{(m_1+s\bar\gamma_1)\gamma}{cm_1}\Bigr)^{m_1}(1+\frac{1}{c}\gamma_2)
^{\lceil m_1 \rceil -m_1}}
\,\mathrm{d}\gamma
\\
\nonumber
={}& C\int_{0}^{\infty}\gamma^{k+m_2-1}\exp\Biggl(-\frac{m_2\gamma}{\bar\gamma_2}\Biggr)
\\
&\times H_{1,1}^{1,1}
\left[
\frac{(m_1+s\bar\gamma_1)\gamma}{cm_1}
\;\middle|\;
\begin{gathered} (1-m_1,1) \\ (0,1)\end{gathered}
\right]
H_{1,1}^{1,1}
\left[
\frac{\gamma}{c}
\;\middle|\;
t \begin{gathered} (1-\lceil m_1 \rceil +m_1,1) \\ (0,1)\end{gathered}
\right]
\mathrm{d}\gamma
\\
={}& C\Biggl(\frac{\bar\gamma_2}{m_2}\Biggr)^{k+m_2}
H_{1,\,[1:\,1],\,0,\,[1:\,1]}^{1,\,1,\,1,\,1,\,1}
\left[
\begin{gathered}
\frac{(m_1+s\bar{\gamma}^{}_{1})\bar{\gamma}^{}_{2}}{c\,m_1m_2} \\
\frac{\bar{\gamma}^{}_{2}}{c\,m_2}
\end{gathered}
\;\middle|\;
\begin{gathered}
(k+m_2,1) \\
(1-m_1,1);(1-\lceil{m_1}\rceil+m_1,) \\
- \\
(0,1);(0,1)
\end{gathered}
\right]
\\
={}& C\Biggl(\frac{\bar\gamma_2}{m_2}\Biggr)^{k+m_2}
G_{1,\,[1:\,1],\,0,\,[1:\,1]}^{1,\,1,\,1,\,1,\,1}
\left[
\begin{gathered}
\frac{(m_1+s\bar{\gamma}^{}_{1})\bar{\gamma}^{}_{2}}{c\,m_1m_2}\\
\frac{\bar{\gamma}_{_2}}{c\,m_2}
\end{gathered}
\;\middle|\;
\begin{gathered}
k+m_2\\1-m_1;1-\lceil{m_1}\rceil+m_1 \\
- \\
0;0\end{gathered}
\right].
\end{align}
\twocolumn
这将在纸张中间生成一个如下的等式: 但我被告知这种格式不适合发表,我必须把这个长方程式放在两列。有什么解决办法?
答案1
\medmath
如果我们分解一些方程式并使用命令(来自) ,我们可以使整个组适合一列,nccmath
这将公式的大小减少~20%
。
我添加了另一个基于strip
环境cuted
(捆绑包的一个组件sttools
)的解决方案,该解决方案允许在两列环境中拥有全宽公式,但与此相反table*
,它插入在调用它的位置。
\documentclass[journal]{IEEEtran}
\usepackage{mathtools,amssymb,lipsum, nccmath}
\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
\usepackage{cuted}
\setlength\stripsep{3pt plus 1pt minus 1pt}
\begin{document}
\lipsum[1-2] % filler text
\begin{align}
& T
\triangleq
\int_{0}^{\infty}
\frac
{\gamma^{k+m_2-1}\exp\Bigl(-\mfrac{m_2\gamma}{\bar\gamma_2}\Bigr)}
{1+\Bigl(\mfrac{(m_1+s\bar\gamma_1)\gamma}{cm_1}\Bigr)^{\mathstrut m_1}
\Bigl(1+\mfrac{1}{c}\gamma_2\Bigr)^{\ceil{m_1}-m_1}}
\,\mathrm{d}\gamma
\\[1ex]
& =\!\begin{aligned}[t]\medmath{C\!\int_{0}^{\infty}\!\!\gamma^{k+m_2-1}} & \medmath{\exp\Bigl(\!-\frac{m_2\gamma}{\bar\gamma_2}\!\Bigr)
H_{1,1}^{1,1}
\mathrlap{\left[
\frac{(m_1\!+s\bar\gamma_1)\gamma}{cm_1}
\middle\vert
\begin{gathered} (1\!- m_1,1) \\ (0,1)\end{gathered}
\right]}}\\
& {}\times\medmath{H_{1,1}^{1,1}
\left[
\frac{\gamma}{c}
\;\middle|\;
t \begin{gathered} (1-\ceil{m_1} +m_1,1) \\ (0,1)\end{gathered}
\right]
\mathrm{d}\gamma}
\end{aligned}
\\
& =\!\begin{aligned}[t] \medmath{
C\biggl(\frac{\bar\gamma_2}{m_2}\biggr)^{k+m_2}} & \medmath{H_{1,\,[1:1],\,0,\,[1:1]} ^{1,\,1,\,1,\,1,\,1}}\times {}\\[-1ex]
\MoveEqLeft\medmath{\times\left[
\begin{gathered}
\frac{(m_1\!+s\bar{\gamma}^{}_{1})\bar{\gamma}^{}_{2}}{c\,m_1m_2} \\
\frac{\bar{\gamma}^{}_{2}}{c\,m_2}
\end{gathered}
\middle\vert
\begin{gathered}
(k+m_2,1) \\
(1\!- m_1,1);(1\!-\!\ceil{m_1}\!+ m_1,) \\
- \\
(0,1);(0,1)
\end{gathered}
\right]}
\end{aligned}
\\[1ex]
& =\!\begin{aligned}[t] \medmath{C\biggl(\frac{\bar\gamma_2}{m_2}\biggr)^{k+m_2}}
& \medmath{G_{1,\,[1:1],\,0,\,[1:1]}^{1,\,1,\,1,\,1,\,1}}\times{}\\[-1ex]
\MoveEqLeft\times \medmath{\left[
\begin{gathered}
\frac{(m_1+s\bar{\gamma}^{}_{1})\bar{\gamma}^{}_{2}}{c\,m_1m_2}\\
\frac{\bar{\gamma}_{_2}}{c\,m_2}
\end{gathered}
\;\middle|\;
\begin{gathered}
k+m_2\\
1-m_1;1-\ceil{m_1}+m_1 \\
- \\
0;0
\end{gathered}
\right]}.
\end{aligned}
\end{align}
\lipsum[3-6] % more filler text
\end{document}
\documentclass[journal]{IEEEtran}
\usepackage{mathtools,amssymb,lipsum}
\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
\usepackage{cuted}
\setlength\stripsep{3pt plus 1pt minus 1pt}
\begin{document}
\lipsum[1-2] % filler text
\begin{strip}
\begin{align}
T & \triangleq
\int_{0}^{\infty}
\frac
{\gamma^{k+m_2-1}\exp\Bigl(-\frac{m_2\gamma}{\bar\gamma_2}\Bigr)}
{1+\Bigl(\frac{(m_1+s\bar\gamma_1)\gamma}{cm_1}\Bigr)^{\mathstrut m_1}
\bigl(1+\frac{1}{c}\gamma_2\bigr)^{\ceil{m_1}-m_1}}
\,\mathrm{d}\gamma
\\
& = C\int_{0}^{\infty}\gamma^{k+m_2-1}\exp\Bigl(-\frac{m_2\gamma}{\bar\gamma_2}\Bigr)
H_{1,1}^{1,1}
\left[
\frac{(m_1+s\bar\gamma_1)\gamma}{cm_1}
\;\middle|\;
\begin{gathered} (1-m_1,1) \\ (0,1)\end{gathered}
\right]
H_{1,1}^{1,1}
\left[
\frac{\gamma}{c}
\;\middle|\;
t \begin{gathered} (1-\ceil{m_1} +m_1,1) \\ (0,1)\end{gathered}
\right]
\mathrm{d}\gamma
\\
& = C\biggl(\frac{\bar\gamma_2}{m_2}\biggr)^{k+m_2}
H_{1,\,[1:\,1],\,0,\,[1:\,1]}^{1,\,1,\,1,\,1,\,1}
\left[
\begin{gathered}
\frac{(m_1+s\bar{\gamma}^{}_{1})\bar{\gamma}^{}_{2}}{c\,m_1m_2} \\
\frac{\bar{\gamma}^{}_{2}}{c\,m_2}
\end{gathered}
\;\middle|\;
\begin{gathered}
(k+m_2,1) \\
(1-m_1,1);(1-\ceil{m_1}+m_1,) \\
- \\
(0,1);(0,1)
\end{gathered}
\right]
\\
& = C\biggl(\frac{\bar\gamma_2}{m_2}\biggr)^{k+m_2}
G_{1,\,[1:\,1],\,0,\,[1:\,1]}^{1,\,1,\,1,\,1,\,1}
\left[
\begin{gathered}
\frac{(m_1+s\bar{\gamma}^{}_{1})\bar{\gamma}^{}_{2}}{c\,m_1m_2}\\
\frac{\bar{\gamma}_{_2}}{c\,m_2}
\end{gathered}
\;\middle|\;
\begin{gathered}
k+m_2\\
1-m_1;1-\ceil{m_1}+m_1 \\
- \\
0;0
\end{gathered}
\right].
\end{align}
\end{strip}
\lipsum[3-6] % more filler text
\end{document}
答案2
我对您尝试显示的方程式的理解不足以判断引入额外的换行符是否合理,以使它们适合该类提供的双列文档布局的单列IEEEtran
。
如果引入额外的换行符确实没有意义,我建议你将整个align
环境放在双倍宽度table*
环境中;当然,你需要选择一个合适的标题。请注意,table*
环境只能出现在顶部一頁。
\documentclass[journal]{IEEEtran}
\usepackage{mathtools,amssymb,lipsum,caption}
\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
\begin{document}
\lipsum[1-2] % filler text
\begin{table*}
\caption{Derivation of Result XYZ}
\centering
\begin{minipage}{0.75\textwidth}
\begin{align}
T&\triangleq
\int_{0}^{\infty}
\frac
{\gamma^{k+m_2-1}\exp\Bigl(-\frac{m_2\gamma}{\bar\gamma_2}\Bigr)}
{1+\Bigl(\frac{(m_1+s\bar\gamma_1)\gamma}{cm_1}\Bigr)^{\mathstrut m_1}
\bigl(1+\frac{1}{c}\gamma_2\bigr)^{\ceil{m_1}-m_1}}
\,\mathrm{d}\gamma
\\
&= \nonumber C\int_{0}^{\infty}\gamma^{k+m_2-1}\exp\Bigl(-\frac{m_2\gamma}{\bar\gamma_2}\Bigr)
\\
&\qquad\qquad \times
H_{1,1}^{1,1}
\left[
\frac{(m_1+s\bar\gamma_1)\gamma}{cm_1}
\;\middle|\;
\begin{gathered} (1-m_1,1) \\ (0,1)\end{gathered}
\right]
H_{1,1}^{1,1}
\left[
\frac{\gamma}{c}
\;\middle|\;
t \begin{gathered} (1-\ceil{m_1} +m_1,1) \\ (0,1)\end{gathered}
\right]
\mathrm{d}\gamma
\\
&= C\biggl(\frac{\bar\gamma_2}{m_2}\biggr)^{k+m_2}
H_{1,\,[1:\,1],\,0,\,[1:\,1]}^{1,\,1,\,1,\,1,\,1}
\left[
\begin{gathered}
\frac{(m_1+s\bar{\gamma}^{}_{1})\bar{\gamma}^{}_{2}}{c\,m_1m_2} \\
\frac{\bar{\gamma}^{}_{2}}{c\,m_2}
\end{gathered}
\;\middle|\;
\begin{gathered}
(k+m_2,1) \\
(1-m_1,1);(1-\ceil{m_1}+m_1,) \\
- \\
(0,1);(0,1)
\end{gathered}
\right]
\\
&= C\biggl(\frac{\bar\gamma_2}{m_2}\biggr)^{k+m_2}
G_{1,\,[1:\,1],\,0,\,[1:\,1]}^{1,\,1,\,1,\,1,\,1}
\left[
\begin{gathered}
\frac{(m_1+s\bar{\gamma}^{}_{1})\bar{\gamma}^{}_{2}}{c\,m_1m_2}\\
\frac{\bar{\gamma}_{_2}}{c\,m_2}
\end{gathered}
\;\middle|\;
\begin{gathered}
k+m_2\\
1-m_1;1-\ceil{m_1}+m_1 \\
- \\
0;0
\end{gathered}
\right].
\end{align}
\medskip
\hrule
\end{minipage}
\end{table*}
%\twocolumn
\lipsum[3-20] % more filler text
\end{document}
答案3
最后:
\documentclass[journal]{IEEEtran}
\usepackage{mathtools,amssymb,lipsum,caption}
\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
\usepackage{glossaries}
\makeglossaries
\newacronym{rog}{ROG}{radius of gyration}
\begin{document}
\lipsum[1-2] % filler text
\begin{table*}
\caption{Derivation of Result XYZ}
\centering
\begin{minipage}{0.75\textwidth}
\begin{align}
\text{mean} &={\frac {1}{n}}\sum _{i=1}^{n}x_{i} \\
\text{weightedMean} &= \frac{\sum_{i_1}^{n} w_i * x_i}{\sum_{i_1}^{n} w_i} \\
\text{centroid} &= \left[ mean(x_{long}), mean(y_{lat}) \right] \\
\text{distanceHaversine} &= 2r \arcsin{\sqrt{\sin^2{\left(\frac{y_{lat_1}-y_{lat_2}}{2} \right)}+ \cos(y_{lat_1}) \cos{y_{lat_2}} \sin^2{\left(\frac{x_{long_1}-x_{long_2}}{2} \right)}}} \\
\end{align}
\medskip
\hrule
\end{minipage}
\end{table*}
%\twocolumn
\lipsum[3-20] % more filler text
\end{document}