考虑以下片段
... To fulfil this requirement, $y_\infty$ is set to the lowest value
of $y\left(\tau_\text{max}\right)$ and $-\max\left|y\right|$
multiplied by $1+\epsilon_\text{mach}$ \footnote{$\epsilon_\text{mach}$ is
the smallest number such that $\epsilon_\text{mach} + 1 > 1$. The
existence of such a number comes from the finite precision of the
computer}, if $y\left(\tau_\text{max}\right)<0$. Otherwise ...
我怎样才能避免脚注数字显示为指数。这句话包含大量信息,因此添加此解释很棘手。
答案1
避免对数学材料添加脚注(并且总体上避免使用脚注)。
在这种情况下,你至少应该有脚注标记后逗号,但它可以减少混淆。
我会重新措辞这段话,同时考虑到εmach是公式中的重要组成部分;脚注应该只包含可以跳过的材料。
\documentclass{article}
\usepackage{amsmath}
\newcommand{\tsub}[1]{_{\textnormal{#1}}}
\textheight=4cm % just not to waste space
\begin{document}
To fulfil this requirement, $y_\infty$ is set to the lowest value
of $y(\tau\tsub{max})$ and $-\max\lvert y\rvert$ multiplied by
$1+\epsilon\tsub{mach}$, if $y\left(\tau_\text{max}\right)<0$.
We denote by $\epsilon\tsub{mach}$ the smallest number such that
$\epsilon\tsub{mach} + 1 > 1$; its existence is ensured by the
finite precision of the computer. Otherwise ...
\bigskip
To fulfil this requirement, $y_\infty$ is set to the lowest value
of $y(\tau\tsub{max})$ and $-\max\lvert y\rvert$
multiplied by $1+\epsilon\tsub{mach}$,\footnote{$\epsilon\tsub{mach}$ is
the smallest number such that $\epsilon\tsub{mach} + 1 > 1$. The
existence of such a number comes from the finite precision of the
computer} if $y(\tau\tsub{max})<0$. Otherwise ...
\end{document}
我删除了错误的\left
-\right
对并为文本下标定义了正确的命令。
答案2
我建议进行以下重写,不需要脚注:
... multiplied by $1+\epsilon_\textnormal{mach}$ where $\epsilon_\textnormal{mach}$ is the smallest number such that $\epsilon_\textnormal{mach} + 1 > 1$.
我完全同意 daleif 的观点,即脚注标记(无论是数字、字母还是符号)应用于数学公式时都会造成混淆。
答案3
这里有两种选择:第一种使用不同的符号来表示脚注。第二种重新措辞句子以消除脚注的使用。
\documentclass[12pt]{article}
\usepackage[symbol*]{footmisc}
\DefineFNsymbols*{lamport}{\dagger\ddagger\S\P\|%
{**}{\dagger\dagger}{\ddagger\ddagger}
}
\begin{document}
... To fulfil this requirement, $y_\infty$ is set to the lowest value
of $y\left(\tau_\text{max}\right)$ and $-\max\left|y\right|$
multiplied by $(1+\epsilon_\text{mach})$ \footnote{$\epsilon_\text{mach}$ is
the smallest number such that $\epsilon_\text{mach} + 1 > 1$. The
existence of such a number comes from the finite precision of the
computer}, if $y\left(\tau_\text{max}\right)<0$. Otherwise ...
\vspace{5mm}
... To fulfil this requirement, $y_\infty$ is set to the lowest value
of $y\left(\tau_\text{max}\right)$ and $-\max\left|y\right|$
multiplied by $(1+\epsilon_\text{mach})$ if $y\left(\tau_\text{max}\right)<0$.
Here $\epsilon_\text{mach}$ is the smallest number such that $\epsilon_\text{mach} + 1 > 1$. The
existence of such a number comes from the finite precision of the
computer. Otherwise ...
\end{document}
footmisc 文档来自http://texdoc.net/texmf-dist/doc/latex/footmisc/footmisc.pdf