\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align*}
\sum_{k=1}^\infty \frac{1}{k} &\rightarrow \infty
&\sum_{k=1}^\infty \frac{1}{k^2} &= \frac{\pi^2}{6}
&&\sum_{k=1}^\infty \frac{1}{k^3} = \zeta(3)
\\
\\
\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k} &= \ln(2)
&\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k^2} &= \frac{\pi^2}{12}
&&\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k^3} = \frac{3}{4}\zeta(3)
\\
\\
\sum_{k=1}^\infty \frac{1}{2k} &\rightarrow \infty
&\sum_{k=1}^\infty \frac{1}{{(2k)}^2} &= \frac{\pi^2}{24}
&&\sum_{k=1}^\infty \frac{1}{{(2k)}^3} = \frac{1}{8}\zeta(3)
\\
\\
\sum_{k=1}^\infty \frac{(-1)^{k+1}}{2k} &= \frac{\ln(2)}{2}
&\sum_{k=1}^\infty \frac{(-1)^{k+1}}{{(2k)}^2} &= \frac{\pi^2}{48}
&&\sum_{k=1}^\infty \frac{(-1)^{k+1}}{{(2k)}^3} = \frac{3}{32}\zeta(3)
\\
\\
\sum_{k=0}^\infty \frac{1}{2k+1} &\rightarrow \infty
&\sum_{k=0}^\infty \frac{1}{{(2k+1)}^2} &= \frac{\pi^2}{8}
&&\sum_{k=0}^\infty \frac{1}{{(2k+1)}^3} = \frac{7}{8}\zeta(3)
\\
\\
\sum_{k=0}^\infty \frac{(-1)^{k}}{2k+1} &= \frac{\pi}{4}
&\sum_{k=0}^\infty \frac{(-1)^{k}}{{(2k+1)}^2} &\neq \frac{\pi^2}{16}
&&\sum_{k=0}^\infty \frac{(-1)^{k}}{{(2k+1)}^3} = \frac{\pi^3}{32} \neq \frac{21}{32}\zeta(3)
\end{align*}
\end{document}
抱歉,我不知道如何显示此代码的输出,所以我上传了 pdf 图像。我试图让总数像最后一列一样对齐。不过,我认为如果总数和等号都对齐,效果会更好。
答案1
其中一个选项是:
\documentclass[12pt]{article}
\usepackage{amsmath}
\begin{document}
\begin{align*}
&\sum_{k=1}^\infty \frac{1}{k} \rightarrow \infty
&& \sum_{k=1}^\infty \frac{1}{k^2} = \frac{\pi^2}{6}
&& \sum_{k=1}^\infty \frac{1}{k^3} = \zeta(3)
\\
&\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k} = \ln(2)
&& \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k^2} = \frac{\pi^2}{12}
&& \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k^3} = \frac{3}{4}\zeta(3)
\\
&\sum_{k=1}^\infty \frac{1}{2k} \rightarrow \infty
&& \sum_{k=1}^\infty \frac{1}{{(2k)}^2} = \frac{\pi^2}{24}
&& \sum_{k=1}^\infty \frac{1}{{(2k)}^3} = \frac{1}{8}\zeta(3)
\\
& \sum_{k=1}^\infty \frac{(-1)^{k+1}}{2k} = \frac{\ln(2)}{2}
&& \sum_{k=1}^\infty \frac{(-1)^{k+1}}{{(2k)}^2} = \frac{\pi^2}{48}
&& \sum_{k=1}^\infty \frac{(-1)^{k+1}}{{(2k)}^3} = \frac{3}{32}\zeta(3)
\\
& \sum_{k=0}^\infty \frac{1}{2k+1} \rightarrow \infty
&& \sum_{k=0}^\infty \frac{1}{{(2k+1)}^2} = \frac{\pi^2}{8}
&& \sum_{k=0}^\infty \frac{1}{{(2k+1)}^3} = \frac{7}{8}\zeta(3)
\\
& \sum_{k=0}^\infty \frac{(-1)^{k}}{2k+1} = \frac{\pi}{4}
&& \sum_{k=0}^\infty \frac{(-1)^{k}}{{(2k+1)}^2} \neq \frac{\pi^2}{16}
&& \sum_{k=0}^\infty \frac{(-1)^{k}}{{(2k+1)}^3} = \frac{\pi^3}{32} \neq \frac{21}{32}\zeta(3)
\end{align*}
\end{document}
生成结果:
\quad
注意:在每行的第一个和第二个方程后使用 可以在列之间添加更多空间。在行之间使用 可以\\
在两行上添加空间,如提议者的原始代码所示。
答案2
alignat
最适合这种情况。请记住,alignat
交替对齐,left
然后right
等等,因此您应该添加两个&&
以获得左对齐。
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{alignat*}{3}
&\sum_{k=1}^\infty \frac{1}{k} \rightarrow \infty
&&\sum_{k=1}^\infty \frac{1}{k^2} = \frac{\pi^2}{6}
&&\sum_{k=1}^\infty \frac{1}{k^3} = \zeta(3)
\\
\\
&\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k} = \ln(2)
&&\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k^2} = \frac{\pi^2}{12}
&&\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k^3} = \frac{3}{4}\zeta(3)
\\
\\
&\sum_{k=1}^\infty \frac{1}{2k} \rightarrow \infty
&&\sum_{k=1}^\infty \frac{1}{{(2k)}^2} = \frac{\pi^2}{24}
&&\sum_{k=1}^\infty \frac{1}{{(2k)}^3} = \frac{1}{8}\zeta(3)
\\
\\
&\sum_{k=1}^\infty \frac{(-1)^{k+1}}{2k} = \frac{\ln(2)}{2}
&&\sum_{k=1}^\infty \frac{(-1)^{k+1}}{{(2k)}^2} = \frac{\pi^2}{48}
&&\sum_{k=1}^\infty \frac{(-1)^{k+1}}{{(2k)}^3} = \frac{3}{32}\zeta(3)
\\
\\
&\sum_{k=0}^\infty \frac{1}{2k+1} \rightarrow \infty
&&\sum_{k=0}^\infty \frac{1}{{(2k+1)}^2} = \frac{\pi^2}{8}
&&\sum_{k=0}^\infty \frac{1}{{(2k+1)}^3} = \frac{7}{8}\zeta(3)
\\
\\
&\sum_{k=0}^\infty \frac{(-1)^{k}}{2k+1} = \frac{\pi}{4}
&&\sum_{k=0}^\infty \frac{(-1)^{k}}{{(2k+1)}^2} \neq \frac{\pi^2}{16}
&&\sum_{k=0}^\infty \frac{(-1)^{k}}{{(2k+1)}^3} = \frac{\pi^3}{32} \neq \frac{21}{32}\zeta(3)
\end{alignat*}
\end{document}
答案3
我建议使用一种经典的对齐方式(使用align*
),另一种(使用alignat*
),也许读起来更愉快,它包括在每一行上不重复求和运算符,最后对整个对齐方式使用一个大的求和运算符:
\documentclass{article}
\usepackage{amsmath}
\usepackage{graphics}
\usepackage{relsize}
\newcommand\Sum{\mathlarger{\sum}}
\usepackage{lettrine}
\usepackage{showframe}
\begin{document}
\begin{align*}
& \sum_{k=1}^\infty \frac{1}{k}\rightarrow \infty &
&\sum_{k=1}^\infty \frac{1}{k^2}= \frac{\pi^2}{6}
& & \sum_{k=1}^\infty \frac{1}{k^3} = \zeta(3)
\\[1ex]
& \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k}= \ln(2)
& & \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k^2}= \frac{\pi^2}{12}
& & \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k^3} = \frac{3}{4}\zeta(3)
\\[1ex]
& \sum_{k=1}^\infty \frac{1}{2k} \rightarrow \infty
& & \sum_{k=1}^\infty \frac{1}{{(2k)}^2} = \frac{\pi^2}{24}
& & \sum_{k=1}^\infty \frac{1}{{(2k)}^3} = \frac{1}{8}\zeta(3)
\\[1ex]
& \sum_{k=1}^\infty \frac{(-1)^{k+1}}{2k}= \frac{\ln(2)}{2}
& & \sum_{k=1}^\infty \frac{(-1)^{k+1}}{{(2k)}^2} = \frac{\pi^2}{48}
& & \sum_{k=1}^\infty \frac{(-1)^{k+1}}{{(2k)}^3} = \frac{3}{32}\zeta(3)
\\[1ex]
& \sum_{k=0}^\infty \frac{1}{2k+1}\rightarrow \infty
& & \sum_{k=0}^\infty \frac{1}{{(2k+1)}^2}= \frac{\pi^2}{8}
& & \sum_{k=0}^\infty \frac{1}{{(2k+1)}^3} = \frac{7}{8}\zeta(3)
\\[1ex]
&\sum_{k=0}^\infty \frac{(-1)^{k}}{2k+1}= \frac{\pi}{4}
& & \sum_{k=0}^\infty \frac{(-1)^{k}}{{(2k+1)}^2}\neq \frac{\pi^2}{16}
& & \sum_{k=0}^\infty \frac{(-1)^{k}}{{(2k+1)}^3} = \frac{\pi^3}{32} \neq \frac{21}{32}\zeta(3)
\end{align*}
\begin{alignat*}{3}
\mathlarger{\sum}_{k=1}^\infty \enspace & \frac{1}{k}\rightarrow \infty
& \quad \Sum_{k=1}^\infty\enspace &
\frac{1}{k^2}= \frac{\pi^2}{6}
& \quad \Sum_{k=1}^\infty\enspace & \frac{1}{k^3} = \zeta(3)
\\[1ex]
&\frac{(-1)^{k+1}}{k}= \ln(2)
& & \frac{(-1)^{k+1}}{k^2}= \frac{\pi^2}{12}
& & \frac{(-1)^{k+1}}{k^3} = \frac{3}{4}\zeta(3)
\\[1ex]
& \frac{1}{2k} \rightarrow \infty
& & \frac{1}{{(2k)}^2} = \frac{\pi^2}{24}
& & \frac{1}{{(2k)}^3} = \frac{1}{8}\zeta(3)
\\[1ex]
& \frac{(-1)^{k+1}}{2k}= \frac{\ln(2)}{2}
& & \frac{(-1)^{k+1}}{{(2k)}^2} = \frac{\pi^2}{48}
& & \frac{(-1)^{k+1}}{{(2k)}^3} = \frac{3}{32}\zeta(3)
\\[1ex]
& \frac{1}{2k+1}\rightarrow \infty
& & \frac{1}{{(2k+1)}^2}= \frac{\pi^2}{8}
& & \frac{1}{{(2k+1)}^3} = \frac{7}{8}\zeta(3)
\\[1ex]
& \frac{(-1)^{k}}{2k+1}= \frac{\pi}{4}
& & \frac{(-1)^{k}}{{(2k+1)}^2}\neq \frac{\pi^2}{16}
& & \frac{(-1)^{k}}{{(2k+1)}^3} = \frac{\pi^3}{32} \neq \frac{21}{32}\zeta(3)
\end{alignat*}
\begin{alignat*}{4}
\smash{\mathop{\raisebox{-0.7\height}{\scalebox{2.8}[4]{$ \sum $}}}_{\boldsymbol{k=}1}^{\boldsymbol\infty}}\! \enspace
& \frac{1}{k}\rightarrow \infty
& \hspace{2.5em} &
\frac{1}{k^2}= \frac{\pi^2}{6}
& \hspace{2.5em} & \frac{1}{k^3} = \zeta(3)
\\
&\frac{(-1)^{k+1}}{k}= \ln(2)
& & \frac{(-1)^{k+1}}{k^2}= \frac{\pi^2}{12}
& & \frac{(-1)^{k+1}}{k^3} = \frac{3}{4}\zeta(3)
\\[1ex]
& \frac{1}{2k} \rightarrow \infty
& & \frac{1}{{(2k)}^2} = \frac{\pi^2}{24}
& & \frac{1}{{(2k)}^3} = \frac{1}{8}\zeta(3)
\\[1ex]
& \frac{(-1)^{k+1}}{2k}= \frac{\ln(2)}{2}
& & \frac{(-1)^{k+1}}{{(2k)}^2} = \frac{\pi^2}{48}
& & \frac{(-1)^{k+1}}{{(2k)}^3} = \frac{3}{32}\zeta(3)
\\[1ex]
& \frac{1}{2k+1}\rightarrow \infty
& & \frac{1}{{(2k+1)}^2}= \frac{\pi^2}{8}
& & \frac{1}{{(2k+1)}^3} = \frac{7}{8}\zeta(3)
\\[1ex]
& \frac{(-1)^{k}}{2k+1}= \frac{\pi}{4}
& & \frac{(-1)^{k}}{{(2k+1)}^2}\neq \frac{\pi^2}{16}
& & \frac{(-1)^{k}}{{(2k+1)}^3} = \frac{\pi^3}{32} \neq \frac{21}{32}\zeta(3)
\end{alignat*}
\end{document}
答案4
您也可以将整个构造设置在array
:
\documentclass{article}
\usepackage{amsmath,array}
\begin{document}
\[
\renewcommand{\arraystretch}{3}% http://tex.stackexchange.com/a/31704/5764
\begin{array}{ >{\displaystyle}l @{\quad} >{\displaystyle}l @{\quad} >{\displaystyle}l }
\sum_{k=1}^\infty \frac{1}{k} \rightarrow \infty
& \sum_{k=1}^\infty \frac{1}{k^2} = \frac{\pi^2}{6}
& \sum_{k=1}^\infty \frac{1}{k^3} = \zeta(3)
\\
\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k} = \ln(2)
& \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k^2} = \frac{\pi^2}{12}
& \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k^3} = \frac{3}{4}\zeta(3)
\\
\sum_{k=1}^\infty \frac{1}{2k} \rightarrow \infty
& \sum_{k=1}^\infty \frac{1}{{(2k)}^2} = \frac{\pi^2}{24}
& \sum_{k=1}^\infty \frac{1}{{(2k)}^3} = \frac{1}{8}\zeta(3)
\\
\sum_{k=1}^\infty \frac{(-1)^{k+1}}{2k} = \frac{\ln(2)}{2}
& \sum_{k=1}^\infty \frac{(-1)^{k+1}}{{(2k)}^2} = \frac{\pi^2}{48}
& \sum_{k=1}^\infty \frac{(-1)^{k+1}}{{(2k)}^3} = \frac{3}{32}\zeta(3)
\\
\sum_{k=0}^\infty \frac{1}{2k+1} \rightarrow \infty
& \sum_{k=0}^\infty \frac{1}{{(2k+1)}^2} = \frac{\pi^2}{8}
& \sum_{k=0}^\infty \frac{1}{{(2k+1)}^3} = \frac{7}{8}\zeta(3)
\\
\sum_{k=0}^\infty \frac{(-1)^{k}}{2k+1} = \frac{\pi}{4}
& \sum_{k=0}^\infty \frac{(-1)^{k}}{{(2k+1)}^2} \neq \frac{\pi^2}{16}
& \sum_{k=0}^\infty \frac{(-1)^{k}}{{(2k+1)}^3} = \frac{\pi^3}{32} \neq \frac{21}{32}\zeta(3)
\end{array}
\]
\end{document}
列之间的填充设置为\quad
。