假设我有
\documentclass[11pt, oneside]{article}
\usepackage{geometry}
\geometry{letterpaper}
\usepackage{scrextend}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{mathtools}
\usepackage[scr=boondoxo,
scrscaled=0.98,
cal=esstix,
frak=esstix,
frakscaled=0.8
]{mathalfa}
\begin{document}
\begin{align}
All_{of\Omega'}(\mathscr{X,n}) = \{ \Omega'_{basedOn}(R, \pi_2(\mathscr{X})) : R \in \mathcal{P}(\pi_1(\mathscr{X})) : |R| = n \}
\end{align}
Using \textit{Theorem 2}, we can prove that the proposition below about \textit{unit div point set} is false:
\begin{addmargin}[2em]{2em}
\vspace{10px}
A \textit{unit div point set} of 5 or more points, $\mathscr{X_{udps}}$, is in $\mathscr{UDPS}^+$ iff all elements in $All_{of\Omega'}(\mathscr{X_{udps}},n)$ are isomorphic to the set of \textit{unit dividons} of some \textit{unit div point set} in $\mathscr{UDPS}^+$, for any $n \in \mathbb{N}_{\geq 4}$ less than $|\pi_1(\mathscr{X_{udps}})|$.
\vspace{10px}
\end{addmargin}
\end{document}
\addmargin
如何以类似于添加编号的方式添加编号align
?