在以下显示中,环境$+ \frac{1}{4!}$
的第三行alignat
应在第二行的正下方对齐$+ \frac{1}{2!}$
。根据更正后的显示中的间距,我可能希望将其$+ \frac{1}{n!}$
直接对齐到正下方$+ \frac{1}{4!}$
。为什么我的代码没有提供这种对齐方式?我如何获得我想要的对齐方式?
\documentclass{amsart}
\usepackage{amsmath}
\usepackage{amsfonts}
\begin{document}
\noindent {\em The sequence}
\begin{equation*}
\left(1 + \frac{1}{n}\right)^{n}
\end{equation*}
{\em is bounded between $2$ and $2.75$.}
\vskip0.2in
\noindent $a_{1} = 2$, and since the given sequence is an increasing sequence, $a_{n} > 2$ for every integer $n > 1$. According to the Binomial Theorem,
\allowdisplaybreaks{
\begin{alignat*}{2}
\left(1 + \frac{1}{n}\right)^{n} &= 1 + \binom{n}{1} \frac{1}{n} + \binom{n}{2} \frac{1}{n^{2}} + \binom{n}{3} \frac{1}{n^{3}} + \ldots
+ \binom{n}{n} \frac{1}{n^{n}} \\
&= 1 + 1 &&+ \frac{1}{2!}\left(1 - \frac{1}{n}\right) + \frac{1}{3!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) \\
&&&+ \frac{1}{4!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\left(1 - \frac{3}{n}\right) + \ldots \\
&&&+ \frac{1}{n!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{n - 1}{n}\right) \\
&< 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \ldots + \frac{1}{n!} \\
&= 1 + 1 + \frac{1}{2!} + \frac{1}{2}\left(\frac{2}{3!} + \frac{2}{4!} + \ldots + \frac{2}{n!}\right) \\
&< 1 + 1 + \frac{1}{2!} + \frac{1}{2}\left(\frac{1}{3} + \frac{1}{3^{2}} + \ldots + \frac{1}{3^{n-2}}\right) \\
&< 1 + 1 + \frac{1}{2!} + \frac{1}{2}\left(\frac{1}{3} + \frac{1}{3^{2}} + \ldots + \frac{1}{3^{n-2}} + \frac{1}{3^{n-1}} + \frac{1}{3^{n}} + \ldots \right) \\
&< 1 + 1 + \frac{1}{2} + \frac{1}{2} \left( \frac{1}{2} \right) \\
&= 2 + \frac{3}{4} . \ \rule{1.5ex}{1.5ex}
\end{alignat*}}
\end{document}
答案1
我认为没有必要设置和微调alignat*
环境。一个基本的align*
环境,加上两个\phantom
语句就足够了。
\documentclass{amsart}
\begin{document}
\noindent
{\em The sequence
\begin{equation*}
\left(1 + \frac{1}{n}\right)^{n}
\end{equation*}
is bounded between $2$ and $2.75$.}
\vskip0.2in
\noindent $a_{1} = 2$, and since the given sequence is an increasing
sequence, $a_{n} > 2$ for every integer $n > 1$. According to the Binomial
Theorem,
\allowdisplaybreaks
\begin{align*}
\left(1 + \frac{1}{n}\right)^{n} &= 1 + \binom{n}{1} \frac{1}{n} +
\binom{n}{2} \frac{1}{n^{2}} + \binom{n}{3} \frac{1}{n^{3}} + \dots
+ \binom{n}{n} \frac{1}{n^{n}} \\
&= 1 + 1 + \frac{1}{2!}\left(1 - \frac{1}{n}\right) + \frac{1}{3!}\left(1 -
\frac{1}{n}\right)\left(1 - \frac{2}{n}\right) \\
&\phantom{{}= 1 + 1}{}+ \frac{1}{4!}\left(1 - \frac{1}{n}\right)\left(1 -
\frac{2}{n}\right)\left(1 - \frac{3}{n}\right) + \dotsb \\
&\phantom{{}= 1 + 1}{}+ \frac{1}{n!}\left(1 - \frac{1}{n}\right)\left(1 -
\frac{2}{n}\right) \dotsb \left(1 - \frac{n - 1}{n}\right) \\
&< 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \\
&= 1 + 1 + \frac{1}{2!} + \frac{1}{2}\left(\frac{2}{3!} + \frac{2}{4!} +
\dots + \frac{2}{n!}\right) \\
&< 1 + 1 + \frac{1}{2!} + \frac{1}{2}\left(\frac{1}{3} + \frac{1}{3^{2}} +
\dots + \frac{1}{3^{n-2}}\right) \\
&< 1 + 1 + \frac{1}{2!} + \frac{1}{2}\left(\frac{1}{3} + \frac{1}{3^{2}} +
\dots + \frac{1}{3^{n-2}} + \frac{1}{3^{n-1}} + \frac{1}{3^{n}} + \dotsb
\right) \\
&< 1 + 1 + \frac{1}{2} + \frac{1}{2} \left( \frac{1}{2} \right) \\
&= 2 + \frac{3}{4} \,. \quad \rule{1.5ex}{1.5ex}
\end{align*}
\end{document}
答案2
嵌套aligned
环境align
:
\documentclass{amsart}
\usepackage{amsmath}
\usepackage{amssymb}
\newtheorem*{statement}{Statement}
\allowdisplaybreaks
\begin{document}
\begin{statement}
The sequence
\begin{equation*}
a_{n}=\left(1 + \frac{1}{n}\right)^{n}
\end{equation*}
is bounded between $2$ and $2.75$.
\end{statement}
\begin{proof}
We have $a_{1} = 2$ and, since the given sequence is an increasing sequence, $a_{n} > 2$
for every integer $n > 1$. According to the Binomial Theorem,
\begin{align*}
\left(1 + \frac{1}{n}\right)^{n}
&= 1 + \binom{n}{1} \frac{1}{n} + \binom{n}{2} \frac{1}{n^{2}} + \binom{n}{3} \frac{1}{n^{3}} + \dots
+ \binom{n}{n} \frac{1}{n^{n}} \\
&= \!\begin{aligned}[t]
1 + 1 &+ \frac{1}{2!}\left(1 - \frac{1}{n}\right)
+ \frac{1}{3!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) \\
&+ \frac{1}{4!}\left(1 - \frac{1}{n}\right)\left(1
- \frac{2}{n}\right)\left(1 - \frac{3}{n}\right) + \dotsb \\
&+ \frac{1}{n!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) \dots
\left(1 - \frac{n - 1}{n}\right)
\end{aligned}\\
&< 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \ldots + \frac{1}{n!} \\
&= 1 + 1 + \frac{1}{2!} + \frac{1}{2}\left(\frac{2}{3!} + \frac{2}{4!} + \dots + \frac{2}{n!}\right) \\
&< 1 + 1 + \frac{1}{2!} + \frac{1}{2}\left(\frac{1}{3} + \frac{1}{3^{2}} + \dots
+ \frac{1}{3^{n-2}}\right) \\
&< 1 + 1 + \frac{1}{2!} + \frac{1}{2}\left(\frac{1}{3} + \frac{1}{3^{2}} + \ldots + \frac{1}{3^{n-2}}
+ \frac{1}{3^{n-1}} + \frac{1}{3^{n}} + \ldots \right) \\
&< 1 + 1 + \frac{1}{2} + \frac{1}{2} \left( \frac{1}{2} \right) \\
&= 2 + \frac{3}{4} .\qedhere
\end{align*}
\end{proof}
\end{document}
请注意,这\allowdisplaybreaks
是声明,而不是带参数的命令。它应该在序言中发布,并在文档的最终版本中删除,并\displaybreak
在所需的位置添加合适的命令。