首先我想强调的是,我已经阅读了有关该主题的所有问题,但没有解决我的问题。
我会写下我之前所拥有的一切,\begin{document}
只是为了确保这里没有错误。
\documentclass[a4paper,openright,10pt]{book}
\usepackage{float}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage[utf8]{inputenc}
\usepackage{upgreek}
\usepackage[usenames]{color}
\usepackage[none]{hyphenat}
\usepackage{caption}
\usepackage{subcaption}
\usepackage{subfig}
\usepackage{afterpage}
\usepackage{indentfirst}
\usepackage{emptypage}
\usepackage{fancyhdr}
\usepackage{multirow}
\usepackage{appendix}
\usepackage{titlesec}
\usepackage{etoolbox}
\usepackage{setspace}
\usepackage[belowskip=-15pt,aboveskip=0pt]{caption}
\usepackage{array,booktabs}
\pagestyle{fancy}
\fancyhf{}
\fancyhead[LO]{\nouppercase{\rightmark}}
\fancyhead[RE]{\leftmark}
\fancyhead[RO,LE]{\thepage}
\renewcommand{\headrulewidth}{0.5pt}
\titlespacing*{\section}{0pt}{7mm}{5mm}
\captionsetup[table]{skip=10pt}
\setlength{\abovedisplayskip}{10.0pt plus 2.0pt minus 5.0pt}
\setlength{\belowdisplayskip}{10.0pt plus 2.0pt minus 5.0pt}
\setlength{\abovedisplayshortskip}{10.0pt plus 2.0pt minus 5.0pt}
\setlength{\belowdisplayshortskip}{10.0pt plus 2.0pt minus 5.0pt}
\begin{document}
但是我可以更改其他参数\setlength{\abovedisplayskip}
,但总是出现这种奇怪的事情:
....escrita de forma diferencial y separando la velocidad horizontal y vertical queda:
\begin{equation}\label{eq:a2}
\frac{\partial u}{\partial t}+ u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}= - \frac{\partial p}{\partial x} + \frac{1}{Re} \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}}\right)
\end{equation}
\begin{equation}\label{eq:a3}
\frac{\partial v}{\partial t}+ u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y}= -\frac{\partial p}{\partial y} + \frac{1}{Re} \left(\frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y^{2}}\right)
\end{equation}
A priori estás ecuaciones parecen dificil de discretizar....
其中的空间比文档其余部分的空间大得多,例如:
Lo primero será reescribir las ecuaciones de Navier-Stokes \ref{eq:a2} y {eq:a3} para el caso de un flujo incompresible newtoniano y bidimensional.
\begin{equation}\label{eq:5}
\frac{\partial u}{\partial t} + \frac{\partial u^{2}}{\partial x} + \frac{\partial uv}{\partial y} = - \frac{\partial p}{\partial x} + \frac{1}{Re} \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}}\right)
\end{equation}
\begin{equation}\label{eq:5b}
\frac{\partial v}{\partial t} + \frac{\partial v^{2}}{\partial y} + \frac{\partial uv}{\partial x} = - \frac{\partial p}{\partial y} + \frac{1}{Re} \left(\frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y^{2}}\right)
\end{equation}
A partir de aquí se va a denotar la velocidad como $q$, ya que el desarrollo que se va a seguir es valido tanto para la velocidad horizontal como para la vertical.
Las ecuaciones anteriores se pueden escribir de forma más compacta como en \ref{eq:6}. Se añade además la ecuación de la continuidad:
\begin{equation}\label{eq:6}
\frac{\partial q}{\partial t} = -Gp + H_{q}+ \frac{1}{Re} Lq
\end{equation}
\begin{equation}\label{eq:6b}
Dq = 0
\end{equation}
La información sobre los operadores $H_q, G, L....
显然,我正在做同样的事情,但显示的结果却不同。
注意:下一页中我没有牢不可破的方块。
答案1
如果你遵守一些规则,你就会得到正确的间距:
- 绝不显示前有一个空白行;
- 绝不有两个连续的不同显示。
遵守第一条规则很容易;对于第二条规则,使用amsmath
诸如gather
和 之类的环境align
。
我对你的前言提出了一些评论。
\documentclass[a4paper,openright,10pt]{book}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[spanish,es-notilde]{babel}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{upgreek}
\usepackage{float}
\usepackage{graphicx}
\usepackage[usenames]{color}
%\usepackage[none]{hyphenat} % useless or even harmful
\usepackage{caption}
\usepackage{subcaption}
%\usepackage{subfig} % either subfig or subcaption, not both
\usepackage{afterpage}
\usepackage{indentfirst}
\usepackage{emptypage}
\usepackage{fancyhdr}
\usepackage{multirow}
\usepackage{appendix}
\usepackage{titlesec}
\usepackage{etoolbox}
%\usepackage{setspace} %
\usepackage{array,booktabs}
\captionsetup{belowskip=-15pt,aboveskip=0pt}
\captionsetup[table]{skip=10pt}
\pagestyle{fancy}
\fancyhf{}
\fancyhead[LO]{\nouppercase{\rightmark}}
\fancyhead[RE]{\leftmark}
\fancyhead[RO,LE]{\thepage}
\renewcommand{\headrulewidth}{0.5pt}
\titlespacing*{\section}{0pt}{7mm}{5mm}
% patch \normalsize to add the new values
\makeatletter
\g@addto@macro\normalsize{%
\setlength{\abovedisplayskip}{10.0pt plus 2.0pt minus 5.0pt}%
\setlength{\belowdisplayskip}{10.0pt plus 2.0pt minus 5.0pt}%
\setlength{\abovedisplayshortskip}{10.0pt plus 2.0pt minus 5.0pt}%
\setlength{\belowdisplayshortskip}{10.0pt plus 2.0pt minus 5.0pt}%
}
\makeatother
\begin{document}
....escrita de forma diferencial y separando la velocidad horizontal y vertical queda:
\begin{gather}
\frac{\partial u}{\partial t}+ u \frac{\partial u}{\partial x} +
v \frac{\partial u}{\partial y}= - \frac{\partial p}{\partial x} +
\frac{1}{Re} \left(\frac{\partial^{2} u}{\partial x^{2}} +
\frac{\partial^{2} u}{\partial y^{2}}\right)
\label{eq:a2}
\\
\frac{\partial v}{\partial t}+ u \frac{\partial v}{\partial x} +
v \frac{\partial v}{\partial y}= -\frac{\partial p}{\partial y} +
\frac{1}{Re} \left(\frac{\partial^{2} v}{\partial x^{2}} +
\frac{\partial^{2} v}{\partial y^{2}}\right)
\label{eq:a3}
\end{gather}
A priori estás ecuaciones parecen dificil de discretizar....
Lo primero será reescribir las ecuaciones de Navier-Stokes \ref{eq:a2} y {eq:a3} para el caso de un
flujo incompresible newtoniano y bidimensional.
\begin{gather}
\frac{\partial u}{\partial t} + \frac{\partial u^{2}}{\partial x} +
\frac{\partial uv}{\partial y} = - \frac{\partial p}{\partial x} +
\frac{1}{Re} \left(\frac{\partial^{2} u}{\partial x^{2}} +
\frac{\partial^{2} u}{\partial y^{2}}\right)
\label{eq:5}
\\
\frac{\partial v}{\partial t} + \frac{\partial v^{2}}{\partial y} +
\frac{\partial uv}{\partial x} = - \frac{\partial p}{\partial y} +
\frac{1}{Re} \left(\frac{\partial^{2} v}{\partial x^{2}} +
\frac{\partial^{2} v}{\partial y^{2}}\right)
\label{eq:5b}
\end{gather}
A partir de aquí se va a denotar la velocidad como $q$, ya que el desarrollo que se va a seguir es
valido tanto para la velocidad horizontal como para la vertical. Las ecuaciones anteriores se pueden
escribir de forma más compacta como en \ref{eq:6}. Se añade además la ecuación de la continuidad:
\begin{gather}
\frac{\partial q}{\partial t} = -Gp + H_{q}+ \frac{1}{Re} Lq
\label{eq:6}
\\
Dq = 0
\label{eq:6b}
\end{gather}
La información sobre los operadores $H_q$, $G$, $L$ ....
\end{document}
不,\raggedbottom
这不是答案。
babel
通过如图所示的加载可以获得正确的连字。