对非定理条目使用类似“定理”的编号

对非定理条目使用类似“定理”的编号

这也许分为两个部分,1) 我希望使用定理计数器(及其相关的“样式”)而不是内置于 \begin{equation} 中的样式对某些方程进行编号。根据 MWE,方程 (1.1) 将显示为 1.3(无括号和粗体)。2) 是否可以将定理编号“拆分”或围绕一系列方程进行显示,就像 \split 对方程编号所做的那样?我已经破解了 \newtheoremstyle 以提供适当的编号(如 MWE 中显示的 1.2),但此编号超出了对齐方程的范围。我不确定我需要在哪里进行调整。任何想法都将不胜感激。

    \documentclass[12pt,leqno]{book}

    \usepackage{amsmath, mathtools,amssymb,amscd,amsthm,amstext}
    \usepackage{indentfirst}
    \usepackage{changepage}

    % HACKING \adjustwidth so that it has equal vertical whitespace above/below
    \usepackage{etoolbox}
    \makeatletter
    \apptocmd\adjustwidth{\@inlabelfalse\@newlistfalse}
    \makeatother

    \setlength\parindent{1.2cm}

    % Indentation
    \def\changemargin#1#2{\list{}{\rightmargin#2\leftmargin#1}\item[]}
    \let\endchangemargin=\endlist 

    % \swapnumbers puts number ahead of heading - as in 3.4 Definition, rather than Definition 3.4
    \swapnumbers

    % Redefine theorem style
    \newtheoremstyle{mytheoremstyle} % name
        {\topsep}                    % Space above
        {\topsep}                    % Space below
        {\itshape}                   % Body font
        {5mm}                 % Indent amount
        {\bfseries}                  % Theorem head font
        {.}                          % Punctuation after theorem head
        {0.5em}                      % Space after theorem head
        {}                           % Theorem head spec (can be left empty, meaning ‘normal’)
    \theoremstyle{mytheoremstyle}
    \newtheorem{theorem}{Theorem}[chapter] 
    \newtheorem{corollary}[theorem]{Corollary}

    % Creates a theorem-numbered entry
    \newtheoremstyle{dotless}
       {}
       {}
       {}
       {}
       {\bfseries}
       {}
       { }
       {}
    \theoremstyle{dotless}
    \newtheorem{line_eq}[theorem]{}

    \begin{document}
    \chapter{}

    The next result is also an almost immediate consequence of the preceding theorem.

    % Corollary 2.5
    \begin{adjustwidth}{.6cm}{.6cm}
    \begin{corollary}
    The additive inverse of an element $a$ of a ring $R$, whose existence is
    asserted by Property \textup{\textbf{P}}$_4$, in unique.
    \end{corollary}

    \noindent\textsc{proof}. To prove this statement, suppose that $a+x= 0$ and that
    $a+y=0$. Then $a=x=a+y$, and one of the cancellation laws of addition shows
    at once that $x=y$.
    \end{adjustwidth}
    \vspace{5mm}

    \noindent Here's some statements:

    \begin{line_eq}
       \begin{align*}
          &(\textup{i})   &      -(-a) &= a,       \\
          &(\textup{ii})  &     -(a+b) &= -a-b,    \\
          &(\textup{iii}) &     -(a-b) &= -a+b,    \\
          &(\textup{iv})  &   (a-b)-c  &= a-(b+c). \\
       \end{align*}
    \end{line_eq}

    \noindent
    Let us prove the second of these ...
    \begin{equation}
       a = -(-a)
    \end{equation}
    \end{document}

答案1

抱歉,MWE 不太简单,但我想展示一个比较全面的例子。我希望有定理、推论、定义和具体的方程式在一章的所有章节中都使用同一个计数器,然后在下一章中重置。我试图自己记录示例以展示代码的重要部分,因为我可能是最后一个解释 Latex 细节的人。我在原始帖子中提出的上述两个问题都在这里得到解决。感谢那些评论者,他们让这项工作如我所设想的那样顺利进行。

  \documentclass[12pt, leqno]{book}
  \usepackage{mathtools,amsthm} 
  \usepackage{changepage} % Use the \adjustwidth environment
  \usepackage{enumerate}
  \usepackage[shortlabels]{enumitem}

  %% Set equation numbering to chapter, resetting
  %% on next chapter
  \numberwithin{equation}{chapter} 

  % Define theorem style - indentation + italics
  \newtheoremstyle{mytheoremstyle}
      {\topsep}
      {\topsep}                    
      {\itshape}                   
      {5mm}                      
      {\bfseries}                  
      {.}                          
      {0.5em}                      
      {}                           
  \theoremstyle{mytheoremstyle}
  \newtheorem{theorem}[equation]{Theorem}      %% Theorems and Corollaries are 
  \newtheorem{corollary}[equation]{Corollary}  %% now tied to equation numbering

  % Define definition style - indentation only
  \newtheoremstyle{mydefinitionstyle} 
      {\topsep}                       
      {\topsep}                       
      {}                              
      {5mm}                           
      {\bfseries}                     
      {.}                             
      {0.5em}                         
      {}                              
   \theoremstyle{mydefinitionstyle}
   \newtheorem{definition}[equation]{Definition}  %% Defn tied to equation numbering

  %% Define tagform to remove brackets/braces around equation tag
  \newtagform{nobrackets}[\textbf]{}{}

  %% Apply tagform to document
  \usetagform{nobrackets}

  %% Inserts spaces, as in "\blank{3cm}"
  \newcommand{\blank}[1]{\hspace*{#1}}  

  \begin{document}
  \chapter{Fundamentals}
  \section{Basic Concepts}

  Start with an equation:
  \begin{equation} %% Equation 1.1
     1 = 1 + 0
  \end{equation}
  We next prove the following theorem.

  \begin{adjustwidth}{.6cm}{.6cm} %% Theorem 1.2
  \begin{theorem} 
     \textsc{(Cancellation Laws of Addition)}. If $a$, $b$, and $c$ are elements of a ring $R$, 
             the following are true:
  \begin{enumerate}[label=\textup{(}\roman*\textup{)}]
     \item If $a+c = b+c$, then $a=b$,
     \item If $c+a=c+b$, then $a=b$.
  \end{enumerate}
  \end{theorem}
  \noindent \textsc{proof}. We proceed to prove the first statement of this theorem. Let us therefore assume that 

  \usetagform{default} %% Reset equation numbering to "default" behavior
  \begin{equation}
     a + c = b + c. \tag{1} %% Tag should be generated autom. but for now hard-coded
  \end{equation}
  By \textbf{P}$_4$, there exists an element $t$ of $R$ such that 
  \begin{equation}
     c + t = 0. \tag{2}
  \end{equation}
  Now if follows from Equation (1) that ...
  \end{adjustwidth}
  \vspace{5mm}
  \noindent This leads to the following corollary.

  \usetagform{nobrackets} %% Future equations now will follow "modified" behavior

  \begin{adjustwidth}{.6cm}{.6cm} %% Corollary 1.3
  \begin{corollary} 
     Given ring $R$, then for all $a,b,c \in R$, then we have the following:
  \end{corollary}
  \begin{equation}
     \begin{aligned}
        &\text{(i)}   & \blank{1cm} -(-a)    &= a, \blank{6cm}  \\
        &\text{(ii)}  & \blank{1cm} -(a+b)   &= -a-b,           \\ 
        &\text{(iii)} & \blank{1cm} -(a-b)   &= -a+b,           \\ 
        &\text{(iv)}  & \blank{1cm} (a-b)-c  &= a-(b+c).        \\
     \end{aligned}
  \end{equation}
  \end{adjustwidth}

  \begin{adjustwidth}{.6cm}{.6cm} % Definition 1.5
  \begin{definition} 
     Let $a$ be an element of a ring $R$ with unity $e$. If there exists an element
     $s$ of $R$ such that 
     \begin{equation*}
        as = sa = e,
     \end{equation*}
     then $s$ is called the \textit{multiplicative inverse} of $a$.
  \end{definition}
  \end{adjustwidth}
  \end{document}

相关内容