我有一张使用多行的表格,我想让一些行线跨越某些列,如下图所示。如果有人能帮我写出如何使用我的代码来实现这一点,我将不胜感激!
我的代码:
\begin{center}
\begin{tabular}{ |c|c|c|c| }
\hline
If... & Player 1 removes... & Matches Left & Wins? \\
\hline
\multirow{3}{8em}{$k +1 \equiv 0$ (mod $4$)} & 1 matches & $k \equiv 3$ (mod $4$) & \multirow{2}{4em}{Player 2} \\
& 2 matches & $(k-1) \equiv 2$ (mod $4$) & \\
& 3 matches & $(k-2) \equiv 1$ (mod $4$) & Player 1\\
\hline
\multirow{3}{8em}{$k +1 \equiv 1$ (mod $4$)} & 1 matches & $k \equiv 0$ (mod $4$) & \multirow{3}{4em}{Player 2} \\
& 2 matches & $(k-1) \equiv 3$ (mod $4$) & \\
& 3 matches & $(k-2) \equiv 2$ (mod $4$) & \\
\hline
\multirow{3}{8em}{$k +1 \equiv 2$ (mod $4$)} & 1 matches & $k \equiv 1$ (mod $4$) & Player 1 \\
& 2 matches & $(k-1) \equiv 0$ (mod $4$) &\multirow{2}{4em}{Player 2} \\
& 3 matches & $(k-2) \equiv 3$ (mod $4$) & \\
\hline
\multirow{3}{8em}{$k +1 \equiv 3$ (mod $4$)} & 1 matches & $k \equiv 2$ (mod $4$) & Player 2 \\
& 2 matches & $(k-1) \equiv 1$ (mod $4$) & Player 1 \\
& 3 matches & $(k-2) \equiv 0$ (mod $4$) & Player 2 \\
\hline
\end{tabular}
\end{center}
答案1
使用\cline{2-4}
:
\begin{tabular}{ |c|c|c|c| }
\hline
If... & Player 1 removes... & Matches Left & Wins? \\
\hline
\multirow{3}{8em}{$k +1 \equiv 0$ (mod $4$)} & 1 matches & $k \equiv 3$ (mod $4$) & \multirow{2}{4em}{Player 2} \\
& 2 matches & $(k-1) \equiv 2$ (mod $4$) & \\\cline{2-4}
& 3 matches & $(k-2) \equiv 1$ (mod $4$) & Player 1\\
\hline
\multirow{3}{8em}{$k +1 \equiv 1$ (mod $4$)} & 1 matches & $k \equiv 0$ (mod $4$) & \multirow{3}{4em}{Player 2} \\
& 2 matches & $(k-1) \equiv 3$ (mod $4$) & \\
& 3 matches & $(k-2) \equiv 2$ (mod $4$) & \\
\hline
\multirow{3}{8em}{$k +1 \equiv 2$ (mod $4$)} & 1 matches & $k \equiv 1$ (mod $4$) & Player 1 \\ \cline{2-4}
& 2 matches & $(k-1) \equiv 0$ (mod $4$) &\multirow{2}{4em}{Player 2} \\
& 3 matches & $(k-2) \equiv 3$ (mod $4$) & \\
\hline
\multirow{3}{8em}{$k +1 \equiv 3$ (mod $4$)} & 1 matches & $k \equiv 2$ (mod $4$) & Player 2 \\ \cline{2-4}
& 2 matches & $(k-1) \equiv 1$ (mod $4$) & Player 1 \\ \cline{2-4}
& 3 matches & $(k-2) \equiv 0$ (mod $4$) & Player 2 \\
\hline
\end{tabular}