我该如何编码问题3.)
并且5.)
与剩余代码保持一致?显示内容就是我想要的。
\documentclass{amsart}
\usepackage{amsmath}
\usepackage{amsfonts}
\newlength\labelwd
\settowidth\labelwd{\bfseries viii.)}
\usepackage{tasks}
\settasks{counter-format =tsk[a].), label-format=\bfseries, label-offset=1em, label-align=right, label-width
=\labelwd, before-skip =\smallskipamount, after-item-skip=0pt}
\usepackage{enumitem}
\setlist[enumerate,1]{% (
leftmargin=*, itemsep=12pt, label={\textbf{\arabic*.)}}}
\begin{document}
\begin{center}\Large{\textbf{Elementary Number Theory}}\end{center}\vskip0.25in
\begin{enumerate}[itemsep=\baselineskip]
\item How many positive integers less than 100 have a remainder of 3 upon division by 7?
\begin{tasks}(3)
\task 10
\task 11
\task 12
\task 13
\task 14
\end{tasks}
\end{enumerate}
\begin{enumerate}[start=2, itemsep=\baselineskip]
\item For every natural number $n$, $\tau(n)$ is the number of positive divisors of $n$. Evaluate $\tau^{3}(12)$.
\begin{tasks}(3)
\task 1
\task 2
\task 3
\task 4
\task 6
\end{tasks}
\end{enumerate}
\noindent {\textbf{3.) }}$p$ and $q$ are prime numbers greater than 2. which of the following statements must be true? \\
\hspace*{3em} \hphantom{3.)\ }
\begin{tabular}{r l}
{\bf I} & \hspace*{-0.5em}$p + q$ is even. \\
{\bf II} & \hspace*{-0.5em}$pq$ is odd. \\
{\bf III} & \hspace*{-0.5em}$p^{2} - q^{2}$ is even
\end{tabular}
\begin{tabbing}
\hspace*{2em} \= \hspace{2.5in} \= \kill
\> {\textbf{a.) }}I only \> {\textbf{b.) }}II only \\
\> {\textbf{c.) }}I and II only \> {\textbf{d.) }}I and III only \\
\> {\textbf{e.) }}I, II, and III
\end{tabbing}
\vskip0.25in
\begin{enumerate}[start=4, itemsep=\baselineskip]
\item How many integers less than 1000 are such that the remainder upon division by each of 2, 3, 4, 5, 6, and 7 is 1?
\begin{tasks}(3)
\task 0
\task 1
\task 2
\task 3
\task 4
\end{tasks}
\end{enumerate}
\noindent {\textbf{5.) }}$n$ is a positive integer. Which of the following quantities is divisible by 3? \\
\hspace*{3em} \hphantom{3.)\ }
\begin{tabular}{r l}
{\bf I} & \hspace*{-0.5em}$n^{3} - 1$ \\
{\bf II} & \hspace*{-0.5em}$n^{3} + 1$ \\
{\bf III} & \hspace*{-0.5em}$n^{3} + 2n$
\end{tabular}
\begin{tabbing}
\hspace*{2em} \= \hspace{2.5in} \= \kill
\> {\textbf{a.) }}I only \> {\textbf{b.) }}II only \\
\> {\textbf{c.) }}I and II only \> {\textbf{d.) }}II and III only \\
\> {\textbf{e.) }}I, II, and III
\end{tabbing}
\end{document}
答案1
我会这样做:
\documentclass{amsart}
\usepackage[showframe]{geometry}
\usepackage{amsmath}
\usepackage{amsfonts}
\newlength\labelwd
\settowidth\labelwd{\bfseries viii.)}
\usepackage{tasks}
\settasks{counter-format =tsk[a].), label-format=\bfseries, label-offset=1em, label-align=right, label-width
=\labelwd, before-skip =\smallskipamount, after-item-skip=0pt}
\usepackage[inline]{enumitem}
\setlist[enumerate]{% (
labelindent = 0pt, leftmargin=*, itemsep=12pt, label={\textbf{\arabic*.)}}}
\begin{document}
\begin{center}\Large{\textbf{Elementary Number Theory}}\end{center}\vskip0.25in
%\setlist[enumerate, 1]{itemsep=\baselineskip}
\begin{enumerate}
\item How many positive integers less than 100 have a remainder of 3 upon division by 7?
\begin{tasks}(3)
\task 10
\task 11
\task 12
\task 13
\task 14
\end{tasks}
\item For every natural number $n$, $\tau(n)$ is the number of positive divisors of $n$. Evaluate $\tau^{3}(12)$.
\begin{tasks}(3)
\task 1
\task 2
\task 3
\task 4
\task 6
\end{tasks}
\item $p$ and $q$ are prime numbers greater than 2. Consider the following statements:
\begin{tasks}[counter-format = tsk[R], label-format=\normalfont, after-skip=1\medskipamount](3)
\task $p + q$ is even.
\task $pq$ is odd.
\task $p^{2} - q^{2}$ is even
\end{tasks}
Which of the following must be true?
\begin{tasks}(3)
\task I only
\task II only
\task I and II only
\task I and III only
\task I, II, and III
\end{tasks}
\item How many integers less than 1000 are such that the remainder upon division by each of 2, 3, 4, 5, 6, and 7 is 1?
\begin{tasks}(3)
\task 0
\task 1
\task 2
\task 3
\task 4
\end{tasks}
\item $n$ is a positive integer. Consider the following quantities:
\begin{tasks}[counter-format = tsk[R], label-format=\normalfont, after- skip=1\medskipamount](3)
\task $n^{3} - 1$ \
\task $n^{3} + 1$
\task $n^{3} + 2n$
\end{tasks}
Which is divisible by 3?
\begin{tasks}(3)
\task I only
\task II only
\task I and II only
\task II and III only
\task I, II, and III
\end{tasks}
\end{enumerate}
\end{document}
变体:
\documentclass{amsart}
\usepackage{amsmath}
\usepackage{amsfonts}
\newlength\labelwd
\settowidth\labelwd{\bfseries viii.)}
\usepackage{tasks}
\settasks{counter-format =tsk[a].), label-format=\bfseries, label-offset=1em, label-align=right, label-width
=\labelwd, item-indent=\dimexpr\labelwd+1em\relax, before-skip =\smallskipamount, after-item-skip=0pt}
\usepackage{enumitem}
\setlist[enumerate,1]{% (
leftmargin=*, itemsep=12pt, label={\textbf{\arabic*.)}}}
\begin{document}
\begin{center}\Large{\textbf{Elementary Number Theory}}\end{center}\vskip0.25in
\begin{enumerate}[itemsep=\baselineskip]
\item How many positive integers less than 100 have a remainder of 3 upon division by 7?
\begin{tasks}(3)
\task 10
\task 11
\task 12
\task 13
\task 14
\end{tasks}
\end{enumerate}
\begin{enumerate}[start=2, itemsep=\baselineskip]
\item For every natural number $n$, $\tau(n)$ is the number of positive divisors of $n$. Evaluate $\tau^{3}(12)$.
\begin{tasks}(3)
\task 1
\task 2
\task 3
\task 4
\task 6
\end{tasks}
\end{enumerate}
\noindent {\textbf{3.) }}$p$ and $q$ are prime numbers greater than 2. which of the following statements must be true?
\begin{tasks}[counter-format =tsk[R], item-indent=5.1em](1)
\task $p + q$ is even.
\task $pq$ is odd.
\task $p^{2} - q^{2}$ is even
\end{tasks}
\begin{tasks}[ item-indent=\dimexpr\labelwd+2.85em](2)
\task I only
\task II only
\task I and II only
\task I and III only
\task I, II, and III
\end{tasks}
\begin{enumerate}[start=4, itemsep=\baselineskip]
\item How many integers less than 1000 are such that the remainder upon division by each of 2, 3, 4, 5, 6, and 7 is 1?
\begin{tasks}(3)
\task 0
\task 1
\task 2
\task 3
\task 4
\end{tasks}
\end{enumerate}
\noindent {\textbf{5.) }}$n$ is a positive integer. Which of the following quantities is divisible by 3?
\begin{tasks}[counter-format =tsk[R], item-indent=5.1em](1)
\task $n^{3} - 1$
\task $n^{3} + 1$
\task $n^{3} + 2n$
\end{tasks}
\begin{tasks}[item-indent=\dimexpr\labelwd+2.85em](2)
\task I only
\task II only
\task I and II only
\task II and III only
\task I, II, and III
\end{tasks}
\end{document}
答案2
我对原始代码所做的唯一修改是在序言中添加了\newlength\HeightOfRadicalNotation
and ,并在第一个示例中将 and 作为任务环境的一个选项。它确实为我提供了第一个示例中表达式之间更合适的间距。行间距是多少?它没有 $\sqrt{1}$ 的高度那么大。\settoheight\HeightOfRadicalNotation{$\sqrt{1}$}
after-item-skip=\HeightOfRadicalNotation
\documentclass[10pt]{amsart}
\usepackage{amsmath}
\usepackage{array,booktabs}
\newlength\labelwd
\settowidth\labelwd{ iii.)}
\newlength\HeightOfRadicalNotation
\settoheight\HeightOfRadicalNotation{$\sqrt{1}$}
\usepackage{tasks}
\settasks{counter-format =tsk[r].), label-format=\bfseries, label-offset=1em, label-align=right, label-width
=\labelwd, item-indent=\labelwd+3em, before-skip =\smallskipamount, after-item-skip=0pt}
\usepackage{tikz}
\usetikzlibrary{calc,angles,positioning,intersections,quotes,decorations.markings,backgrounds,patterns}
\usepackage{mathtools}
\usepackage{pgfplots}
\pgfplotsset{compat=1.11}
\setlength{\oddsidemargin}{0.0in}
\setlength{\evensidemargin}{0.0in} \setlength{\textwidth}{6.1in}
\setlength{\topmargin}{0.0in} \setlength{\textheight}{9in}
\begin{document}
\noindent \textbf{Example} \vskip1.25mm
\noindent State any vertical asymptotes of the following functions.
\begin{tasks}[after-item-skip=\HeightOfRadicalNotation](1)
\task $(x - 1)\big\slash \bigl(\sqrt{x} - 1\bigr)$
\task $1 \big\slash \bigl(\sqrt{x} - 1\bigr)$
\task $1 \big\slash \sqrt[\uproot{1} \leftroot{-1} 3]{x}$
\task $\displaystyle (x - 1) \big\slash \bigl(\sqrt[\uproot{1} \leftroot{-1} 3]{x} - 1\bigr)$
\end{tasks}
\vskip0.25in
\noindent \textbf{Example} \vskip1.25mm
Show that the following functions are increasing functions on the interval $[0, \, \infty)$.
\begin{tasks}(1)
\task $x^{2} + x + 1$
\task $x^{2} + bx$ for any $b > 0$
\task $x^{3} + 2x^{2} + 3x - 7$
\end{tasks}
\end{document}