我想请您与我分享您关于如何在框内对齐以下文本的想法。提前谢谢您
\pagenumbering{gobble}
\noindent\fbox{%
\parbox{\textwidth}{%
\small
\begin{multicols}{2}
\textbf{Nomenclature}\\
\textbf{List of variables:}\\
$u$,$\upsilon$ \quad Velocity components along x-y axes $(m/s)$\\
$U_{w}$ \;\;\;\; Velocity of the wall along the x-axis $(m/s)$\\
$x,y$ \;\;\; Cartesian coordinates measured along the stretching sheet $(m)$\\
$B(x)$ \; Magnetic field strength $(A m^{-1})$\\
$C$ \qquad Nanoparticle concentration $(mol\; m^{-3})$\\
$C_{fx}$ \;\;\; Skin-friction coefficient $(Pascal)$\\
$Nu_{x}$ \;\; Nusselt number\\
$Sh_{x}$ \;\;\; Sherwood number\\
$C_{w}$ \;\;\;\; Nanoparticles concentration at the \\ stretching surface $(mol \;m^{-3})$\\
$C_{\infty}$ \quad Nanoparticle concentration far from the sheet $(mol\; m^{-3})$\\
$C_{p}$ \;\;\;\; Specific heat capacity at constant pressure $(J \;Kg^{-1}\; K)$\\
$D_{T}$ \;\;\; Brownian diffusion coefficient\\
$D_{b}$ \quad\, Thermophoresis diffusion coefficient\\
Ec \quad\; Eckert number\\
$a$ \quad\;\;\; Constant parameter\\
$n$ \quad\;\;\; Nonlinear stretching parameter\\
$f$ \quad\;\;\; Dimensionless stream function\\
$k$ \quad\;\;\; Thermal conductivity $(W m^{-1} K^{-1})$\\
$S$ \quad\;\;\; Suction/injection parameter\\
$Le$ \quad\;\, Lewis number\\
$M$ \quad\;\, Magnetic parameter\\
$Q_{0}$ \quad\; Dimensional heat generation parameter\\
$Nb$ \quad\; Brownian motion parameter\\
$Nt$ \quad\; Thermophoresis parameter\\
$Pr$ \quad\; Prandtl number\\
$Q$ \quad\;\;\, Heat generation/absorption parameter\\
$K_{1}$ \quad\; Velocity slip factor\\
$K_{2}$ \quad\; Thermal slip factor\\
$K_{3}$ \, Concentration slip factor\\
$T$ \;\;\, Fluid temperature $(K)$\\
$q_{w}$ \; Surface heat flux $(W/m^{2})$\\
$q_{m}$ \; Surface mass flux\\
$T_{W}$ \,Temperature at the surface $(K)$\\
$T_{\infty}$ \, Temperature of the fluid far away from the stretching sheet $(K)$\\\\
\textbf{Greek Symbols:}\\
$\alpha$ \quad Thermal diffusivity ($m^{2}/s$)\\
$\eta$ \quad Dimensionless similarity variable\\
$\gamma$ \quad concentration parameter\\
$\mu$ \,\,\,\,\,\, Dynamic viscosity of the base fluid $(kg/m.s)$\\
$\upsilon$ \;\;\; Kinematic viscosity $(m^{2} \;s^{-1})$\\
$\rho_{f}$ \;\, Density of the fluid $(Kg \;m^{-3})$\\
$\rho_{p}$ \;\; Density of the nanoparticle $(Kg\; m^{-3})$\\
$\tau$ \; The ratio of the nanoparticle heat capacity the base fluid heat Capacity\\
$(\rho c)_{f}$ \; Heat capacity of the base fluid $(kg/m.s^{2})$\\
$(\rho c)_{p}$ \; Heat capacity of the nanoparticle $(kg/m.s^{2})$\\
$\theta$ \quad Dimensionless temperature $(K)$\\
p pressure \quad $(N/ m^{2})$\\
$\phi$ \quad Nanoparticle volume fraction\\
$\phi_{W}$ \;\;\; Nanoparticle volume fraction at wall temperature\\
$\phi_{\infty}$\;\;\; Ambient nanoparticle volume fraction\\
$\lambda$ \quad Velocity slip parameter\\
$\delta$ \quad Thermal slip parameter\\\\
\textbf{Sub Scripts:}\\
$f$ \quad Fluid\\
$\emph{W}$ \quad Condition on the sheet\\
$\infty$ \quad Ambient Conditions
\end{multicols}
}%
}
答案1
执行此操作的标准方法是使用tabular
,但这将涉及手动打破列。
如果您希望自动分栏,那么一种可能性是使用环境tabbing
。(不幸的是,longtable
在双列模式下不起作用。)制表符的一般语法是
\begin{tabbing}
line with \= tab marks set\\
next \> line with tab stops\\
another \> line with tab stops\\
\end{tabbing}
在您的情况下,您将需要使用 将文本换行到第二列\parbox
,因此辅助命令很有用:
\newcommand{\entry}[3][\>]{#2 #1 \parbox[t]{.4\textwidth}{#3\strut\par}\\}
所以普通的行只是
\entry{symbol}{explanation}
第一行是
\entry[...\=]{symbol}{explanation}
添加...
一些额外的空白以容纳最宽的标签。
\documentclass{article}
\usepackage{multicol,ragged2e,siunitx}
\sisetup{per-mode=symbol}
\setlength{\fboxsep}{5pt}
\begin{document}
\noindent\fbox{%
\hfill\parbox{\dimexpr\textwidth-15pt}{%
\vspace{-\topskip}\small
\newcommand{\entry}[3][\>]{#2 #1 \parbox[t]{.4\textwidth}{\RaggedRight
#3\strut\par}\\}%
\begin{multicols}{2}
\begin{tabbing}
\textbf{\large Nomenclature}\\[2ex]
\textbf{List of variables:}\\
\entry[\quad\=]{$u$,$\upsilon$}{Velocity components along $x$-$y$
axes (\si{m\per s})}
\entry{$U_{w}$}{Velocity of the wall along the $x$-axis (\si{m\per
s})}
\entry{$x,y$}{Cartesian coordinates measured along the stretching sheet (\si{m})}
\entry{$B(x)$}{Magnetic field strength (\si{A.m^{-1}})}
\entry{$C$}{Nanoparticle concentration (\si{mol.m^{-3}})}
\entry{$C_{fx}$}{Skin-friction coefficient (\si{Pascal})}
\entry{$Nu_{x}$}{Nusselt number}
\entry{$Sh_{x}$}{Sherwood number}
\entry{$C_{w}$}{Nanoparticles concentration at the stretching surface (\si{mol.m^{-3}})}
\entry{$C_{\infty}$}{Nanoparticle concentration far from the sheet (\si{mol.m^{-3}})}
\entry{$C_{p}$}{Specific heat capacity at constant pressure (\si{J.kg^{-1}.K})}
\entry{$D_{T}$}{Brownian diffusion coefficient}
\entry{$D_{b}$}{Thermophoresis diffusion coefficient}
\entry{Ec}{Eckert number}
\entry{$a$}{Constant parameter}
\entry{$n$}{Nonlinear stretching parameter}
\entry{$f$}{Dimensionless stream function}
\entry{$k$}{Thermal conductivity (\si{W.m^{-1}.K^{-1}})}
\entry{$S$}{Suction/injection parameter}
\entry{$Le$}{Lewis number}
\entry{$M$}{Magnetic parameter}
\entry{$Q_{0}$}{Dimensional heat generation parameter}
\entry{$Nb$}{Brownian motion parameter}
\entry{$Nt$}{Thermophoresis parameter}
\entry{$Pr$}{Prandtl number}
\entry{$Q$}{Heat generation/absorption parameter}
\entry{$K_{1}$}{Velocity slip factor}
\entry{$K_{2}$}{Thermal slip factor}
\entry{$K_{3}$}{Concentration slip factor}
\entry{$T$}{Fluid temperature (\si{K})}
\entry{$q_{w}$}{Surface heat flux (\si{W\per m^{2}})}
\entry{$q_{m}$}{Surface mass flux}
\entry{$T_{W}$}{Temperature at the surface (\si{K})}
\entry{$T_{\infty}$}{Temperature of the fluid far away from the stretching sheet (\si{K})}
\textbf{Greek Symbols:}\\
\entry{$\alpha$}{Thermal diffusivity (\si{m^{2}\per s})}
\entry{$\eta$}{Dimensionless similarity variable}
\entry{$\gamma$}{concentration parameter}
\entry{$\mu$}{Dynamic viscosity of the base fluid (\si{kg\per m.s})}
\entry{$\upsilon$}{Kinematic viscosity (\si{m^{2}.s^{-1}})}
\entry{$\rho_{f}$}{Density of the fluid (\si{kg.m^{-3}})}
\entry{$\rho_{p}$}{Density of the nanoparticle (\si{kg.m^{-3}})}
\entry{$\tau$}{The ratio of the nanoparticle heat capacity the base fluid heat Capacity}
\entry{$(\rho c)_{f}$}{Heat capacity of the base fluid (\si{kg\per
m.s^{2}})}
\entry{$(\rho c)_{p}$}{Heat capacity of the nanoparticle
(\si{kg\per m.s^{2}})}
\entry{$\theta$}{Dimensionless temperature (\si{K})}
\entry{p}{pressure (\si{N\per m^{2}})}
\entry{$\phi$}{Nanoparticle volume fraction}
\entry{$\phi_{W}$}{Nanoparticle volume fraction at wall temperature}
\entry{$\phi_{\infty}$}{Ambient nanoparticle volume fraction}
\entry{$\lambda$}{Velocity slip parameter}
\entry{$\delta$}{Thermal slip parameter}
\textbf{Sub Scripts:}\\
\entry{$f$}{Fluid}
\entry{$\emph{W}$}{Condition on the sheet}
\entry{$\infty$}{Ambient Conditions}
\end{tabbing}
\end{multicols}
}%
\hfill}
\end{document}
我选择设置说明\RaggedRight
,因为列很窄。我还使用了siunitx
排版单元的包。最后,我将主标题设置得稍大一些,删除了框顶部的一些多余空间,并使用 使\hfill
文本在框中水平居中。