(二)如何从 Mathematica 渲染大型 TexForm 表达式

(二)如何从 Mathematica 渲染大型 TexForm 表达式

作为我两天前问题的后续如何从 Mathematica 渲染可读的大型 TeXForm 表达式

我也想类似地融入以下两种表达方式:

1.

\frac{2 (\alpha +3) (2 \alpha +5) (10 \alpha +17) (10 \alpha +19) (10 \alpha +21) (10
   \alpha +23) (\alpha  (\alpha  (\alpha  (20 \alpha  (5 \alpha  (740 \alpha
   +5783)+91541)+3013197)+2724024)+1284280)+246960) \, _7F_6\left(1,\alpha
   +\frac{4}{5},\alpha +\frac{5}{6},\alpha +\frac{7}{6},\alpha +\frac{6}{5},\alpha
   +\frac{7}{5},\alpha +\frac{8}{5};\alpha +\frac{17}{10},\alpha +\frac{19}{10},\alpha
   +\frac{21}{10},\alpha +\frac{23}{10},\alpha +\frac{5}{2},\alpha
   +3;\frac{27}{64}\right)+16875 \left(\alpha +\frac{4}{5}\right) \left(\alpha
   +\frac{5}{6}\right) \left(\alpha +\frac{7}{6}\right) \left(\alpha +\frac{6}{5}\right)
   \left(\alpha +\frac{7}{5}\right) \left(\alpha +\frac{8}{5}\right) \left((\alpha 
   (\alpha  (20 \alpha  (25 \alpha  (888 \alpha +5783)+366164)+9039591)+5448048)+1284280)
   \, _7F_6\left(2,\alpha +\frac{9}{5},\alpha +\frac{11}{6},\alpha +\frac{13}{6},\alpha
   +\frac{11}{5},\alpha +\frac{12}{5},\alpha +\frac{13}{5};\alpha +\frac{27}{10},\alpha
   +\frac{29}{10},\alpha +\frac{31}{10},\alpha +\frac{33}{10},\alpha +\frac{7}{2},\alpha
   +4;\frac{27}{64}\right)+(\alpha  (40 \alpha  (25 \alpha  (1110 \alpha
   +5783)+274623)+9039591)+2724024) \, _8F_7\left(2,2,\alpha +\frac{9}{5},\alpha
   +\frac{11}{6},\alpha +\frac{13}{6},\alpha +\frac{11}{5},\alpha +\frac{12}{5},\alpha
   +\frac{13}{5};1,\alpha +\frac{27}{10},\alpha +\frac{29}{10},\alpha
   +\frac{31}{10},\alpha +\frac{33}{10},\alpha +\frac{7}{2},\alpha
   +4;\frac{27}{64}\right)+(40 \alpha  (25 \alpha  (1480 \alpha +5783)+183082)+3013197)
   \, _9F_8\left(2,2,2,\alpha +\frac{9}{5},\alpha +\frac{11}{6},\alpha
   +\frac{13}{6},\alpha +\frac{11}{5},\alpha +\frac{12}{5},\alpha
   +\frac{13}{5};1,1,\alpha +\frac{27}{10},\alpha +\frac{29}{10},\alpha
   +\frac{31}{10},\alpha +\frac{33}{10},\alpha +\frac{7}{2},\alpha
   +4;\frac{27}{64}\right)+20 (25 \alpha  (2220 \alpha +5783)+91541) \,
   _{10}F_9\left(2,2,2,2,\alpha +\frac{9}{5},\alpha +\frac{11}{6},\alpha
   +\frac{13}{6},\alpha +\frac{11}{5},\alpha +\frac{12}{5},\alpha
   +\frac{13}{5};1,1,1,\alpha +\frac{27}{10},\alpha +\frac{29}{10},\alpha
   +\frac{31}{10},\alpha +\frac{33}{10},\alpha +\frac{7}{2},\alpha
   +4;\frac{27}{64}\right)+100 (4440 \alpha +5783) \, _{11}F_{10}\left(2,2,2,2,2,\alpha
   +\frac{9}{5},\alpha +\frac{11}{6},\alpha +\frac{13}{6},\alpha +\frac{11}{5},\alpha
   +\frac{12}{5},\alpha +\frac{13}{5};1,1,1,1,\alpha +\frac{27}{10},\alpha
   +\frac{29}{10},\alpha +\frac{31}{10},\alpha +\frac{33}{10},\alpha +\frac{7}{2},\alpha
   +4;\frac{27}{64}\right)+74000 \, _{12}F_{11}\left(2,2,2,2,2,2,\alpha
   +\frac{9}{5},\alpha +\frac{11}{6},\alpha +\frac{13}{6},\alpha +\frac{11}{5},\alpha
   +\frac{12}{5},\alpha +\frac{13}{5};1,1,1,1,1,\alpha +\frac{27}{10},\alpha
   +\frac{29}{10},\alpha +\frac{31}{10},\alpha +\frac{33}{10},\alpha +\frac{7}{2},\alpha
   +4;\frac{27}{64}\right)\right)}{4288785520939920}

2.

\text{DifferenceRoot}\left[\left\{G_2^1,\alpha \right\}\unicode{f4a1}\left\{(\alpha +3)
   (\alpha +4) (2 \alpha +5) (2 \alpha +7) (10 \alpha +17) (10 \alpha +19) (10 \alpha
   +21) (10 \alpha +23) (10 \alpha +27) (10 \alpha +29) (10 \alpha +31) (10 \alpha +33)
   (\alpha  (\alpha  (\alpha  (20 \alpha  (5 \alpha  (740 \alpha
   +5783)+91541)+3013197)+2724024)+1284280)+246960)+804147285176235 (\alpha +1) (5 \alpha
   +4) (5 \alpha +6) (5 \alpha +7) (5 \alpha +8) (6 \alpha +5) (6 \alpha +7) G_2^1+\alpha
    (-2144392760469960 (\alpha +4) (2 \alpha +7) (10 \alpha +27) (10 \alpha +29) (10
   \alpha +31) (10 \alpha +33)) G_2^1=0,1 G_2^1=\frac{45}{286}\right\}\right]

答案1

确实,这是同一个问题:

\documentclass[preprint,showpacs,preprintnumbers,amsmath,amssymb]{revtex4}
\usepackage{amsmath}
\newcommand\numberthis{\addtocounter{equation}{1}\tag{\theequation}}

\begin{document}

\begin{center}
$\let\left\relax\let\right\relax
\def\frac#1#2{((#1)/(#2))}
\frac{2 (\alpha +3) (2 \alpha +5) (10 \alpha +17) (10 \alpha +19) (10 \alpha +21) (10
   \alpha +23) (\alpha  (\alpha  (\alpha  (20 \alpha  (5 \alpha  (740 \alpha
   +5783)+91541)+3013197)+2724024)+1284280)+246960) \, _7F_6\left(1,\alpha
   +\frac{4}{5},\alpha +\frac{5}{6},\alpha +\frac{7}{6},\alpha +\frac{6}{5},\alpha
   +\frac{7}{5},\alpha +\frac{8}{5};\alpha +\frac{17}{10},\alpha +\frac{19}{10},\alpha
   +\frac{21}{10},\alpha +\frac{23}{10},\alpha +\frac{5}{2},\alpha
   +3;\frac{27}{64}\right)+16875 \left(\alpha +\frac{4}{5}\right) \left(\alpha
   +\frac{5}{6}\right) \left(\alpha +\frac{7}{6}\right) \left(\alpha +\frac{6}{5}\right)
   \left(\alpha +\frac{7}{5}\right) \left(\alpha +\frac{8}{5}\right) \left((\alpha 
   (\alpha  (20 \alpha  (25 \alpha  (888 \alpha +5783)+366164)+9039591)+5448048)+1284280)
   \, _7F_6\left(2,\alpha +\frac{9}{5},\alpha +\frac{11}{6},\alpha +\frac{13}{6},\alpha
   +\frac{11}{5},\alpha +\frac{12}{5},\alpha +\frac{13}{5};\alpha +\frac{27}{10},\alpha
   +\frac{29}{10},\alpha +\frac{31}{10},\alpha +\frac{33}{10},\alpha +\frac{7}{2},\alpha
   +4;\frac{27}{64}\right)+(\alpha  (40 \alpha  (25 \alpha  (1110 \alpha
   +5783)+274623)+9039591)+2724024) \, _8F_7\left(2,2,\alpha +\frac{9}{5},\alpha
   +\frac{11}{6},\alpha +\frac{13}{6},\alpha +\frac{11}{5},\alpha +\frac{12}{5},\alpha
   +\frac{13}{5};1,\alpha +\frac{27}{10},\alpha +\frac{29}{10},\alpha
   +\frac{31}{10},\alpha +\frac{33}{10},\alpha +\frac{7}{2},\alpha
   +4;\frac{27}{64}\right)+(40 \alpha  (25 \alpha  (1480 \alpha +5783)+183082)+3013197)
   \, _9F_8\left(2,2,2,\alpha +\frac{9}{5},\alpha +\frac{11}{6},\alpha
   +\frac{13}{6},\alpha +\frac{11}{5},\alpha +\frac{12}{5},\alpha
   +\frac{13}{5};1,1,\alpha +\frac{27}{10},\alpha +\frac{29}{10},\alpha
   +\frac{31}{10},\alpha +\frac{33}{10},\alpha +\frac{7}{2},\alpha
   +4;\frac{27}{64}\right)+20 (25 \alpha  (2220 \alpha +5783)+91541) \,
   _{10}F_9\left(2,2,2,2,\alpha +\frac{9}{5},\alpha +\frac{11}{6},\alpha
   +\frac{13}{6},\alpha +\frac{11}{5},\alpha +\frac{12}{5},\alpha
   +\frac{13}{5};1,1,1,\alpha +\frac{27}{10},\alpha +\frac{29}{10},\alpha
   +\frac{31}{10},\alpha +\frac{33}{10},\alpha +\frac{7}{2},\alpha
   +4;\frac{27}{64}\right)+100 (4440 \alpha +5783) \, _{11}F_{10}\left(2,2,2,2,2,\alpha
   +\frac{9}{5},\alpha +\frac{11}{6},\alpha +\frac{13}{6},\alpha +\frac{11}{5},\alpha
   +\frac{12}{5},\alpha +\frac{13}{5};1,1,1,1,\alpha +\frac{27}{10},\alpha
   +\frac{29}{10},\alpha +\frac{31}{10},\alpha +\frac{33}{10},\alpha +\frac{7}{2},\alpha
   +4;\frac{27}{64}\right)+74000 \, _{12}F_{11}\left(2,2,2,2,2,2,\alpha
   +\frac{9}{5},\alpha +\frac{11}{6},\alpha +\frac{13}{6},\alpha +\frac{11}{5},\alpha
   +\frac{12}{5},\alpha +\frac{13}{5};1,1,1,1,1,\alpha +\frac{27}{10},\alpha
   +\frac{29}{10},\alpha +\frac{31}{10},\alpha +\frac{33}{10},\alpha +\frac{7}{2},\alpha
   +4;\frac{27}{64}\right)\right)}{4288785520939920}
$
\end{center}

\end{document}

相关内容