我在乳胶中使用 beamer 类。
我的代码和结果如下:
\begin{frame}{The Hamilton-Jacobi-Bellman Equation}
\begin{columns}
\begin{column}{.5\textwidth}
\vfill
\centering
{\Huge{Discrete}}
\\[\baselineskip]
\begin{itemize}
\item System
\[
x_{k+1} = f(x_k, u_k)
\]
\[
k \in \{0, \ldots, N\}
\]
\item Cost
\[
g_N(x_N) + \sum_{k=0}^{N-1}g_k(x_k, u_k)
\]
\item DP equation
\[
J_N(x_N) = g_N(x_N)
\]
\[
J_k(x_k) = \min_{u_k\in U_k} [g_k(x_k, u_k) \hspace{5em}
\]
\[
\hspace{8em} + J_{k+1}(x_k, u_k)]
\]
\end{itemize}
\vfill
\end{column}
\vrule width 1.5pt
\begin{column}{.5\textwidth}
\vfill
\centering
{\Huge{Continuous}}
\\[\baselineskip]
\begin{itemize}
\item System
\[
\dot{x}(t) = f(x(t), u(t))
\]
\[
t \in [0, T]
\]
\item Cost
\[
h(x(T)) + \int_0^T g(x(t), u(t)) dt
\]
\item HJB equation
\[
V(T, x) = h(x)
\]
\[
0 = \min_{u\in U}[g(x,u) + \nabla_t V(t, x) \hspace{4em}
\]
\[
\hspace{6.5em} + \nabla_x V(t, x)'f(x, u)]
\]
\end{itemize}
\vfill
\end{column}
\end{columns}
\end{frame}
我希望每条线都位于同一条水平线上。但是,我的方程式位于不同的线上,例如成本、方程式项等。
答案1
其中一个选项——参见@John Kormylo 评论——是使用tabularx
并启用高级数学设置mathtools
:
\documentclass{beamer}
\usepackage{tabularx}
\usepackage{mathtools}
\begin{document}
\begin{frame}{The Hamilton-Jacobi-Bellman Equation}
\renewcommand\arraystretch{1.2}
\begin{tabularx}{\textwidth}{X | X}%\vrule width 1.5pt
\hfil\Large Discrete & \hfil\Large Continuous \tabularnewline
\textbullet\ System & \textbullet\ System \tabularnewline
$\displaystyle\begin{multlined}[t][0.7\hsize]
x_{k+1} = f(x_k, u_k) \\
k \in \{0, \ldots, N\}
\end{multlined}$ &
$\displaystyle\begin{multlined}[t][0.7\hsize]
\dot{x}(t) = f(x(t), u(t)) \\
t \in [0, T]
\end{multlined}$ \tabularnewline
\textbullet\ Cost & \textbullet\ Cost \tabularnewline
$\displaystyle
g_N(x_N) + \sum_{k=0}^{N-1}g_k(x_k, u_k)
$ & $\displaystyle
h(x(T)) + \int_0^T g(x(t), u(t)) dt
$ \tabularnewline
\textbullet\ DP equation & \textbullet\ HJB equation \tabularnewline
$\displaystyle\begin{multlined}[t][0.7\hsize]
J_N(x_N) = g_N(x_N) \vphantom{\int_0^T} \\
J_k(x_k) = \min_{u_k\in U_k} [g_k(x_k, u_k) \\
+ J_{k+1}(x_k, u_k)]
\end{multlined}$ & $\displaystyle\begin{multlined}[t][0.7\hsize]
h(x(T)) + \int_0^T g(x(t), u(t)) dt \\
V(T, x) = h(x) \\
0 = \min_{u\in U}[g(x,u) + \nabla_t V(t, x)\\
+ \nabla_x V(t, x)'f(x, u)]
\end{multlined}$
\end{tabularx}
\end{frame}
\end{document}