我有以下代码在示例中生成 tikz 图像。
\documentclass{article}
\usepackage{tikz}
\usepackage{amsmath}
\newtheorem{example}{Example}
\begin{document}
\begin{example}
\begin{figure}[h]
\begin{tikzpicture}[thick,scale=0.85, every node/.style={scale=0.85}]
\draw [help lines,white!20!white] (-3,-2) grid (10,6);
\draw[white,dashed]
(-2+2,0.5) coordinate(A)
-- (0.8+2,2) coordinate (B)
-- (0.2+2,4) coordinate (C)
-- (-2+2,2) coordinate (D) -- cycle
(A)--(C) (B)--(D);
\draw (A) .. controls (B) and (C) .. (D);
\filldraw[black] (0.15+2,3.15) circle(2pt) node[anchor=west] {$b_2$};
\filldraw[black] (-0.1+2,2.6) circle(2pt) node[anchor=west] {$b_1$};
\draw [help lines,white!20!white] (0,-3) grid (10,7);
\draw[white,dashed]
(4+0.5,5.5) coordinate(A)
-- (-1+3,3.5) coordinate (B)
-- (-1+2,2.1) coordinate (C)
-- (4,4.25) coordinate (D) -- cycle
(A)--(C) (B)--(D);
\draw (A) .. controls (B) and (C) .. (D);
\draw(3.3,5)--(7,3);
\draw(3.05,4)--(7.25,0.5+1);
\filldraw[black] (4.25,4.48648) circle(2pt) node[anchor=west] {$b_3$};
\filldraw[black] (5,2.8392855) circle(2pt) node[anchor=west] {$b_4$};
\filldraw[black] (5.75,3.675671) circle(2pt) node[anchor=west] {$b_5$};
\filldraw[black] (6.5,1.94642) circle(2pt) node[anchor=west] {$b_6$};
\filldraw[black] (6.85,3.0810772) circle(2pt) node[anchor=west] {$b_7$};
\draw(4.25,1.25+1)--(1,-2+1);
\filldraw[black] (0.35+1.9,-1.46+1.8*0.995-0.08) circle(2pt) node[anchor=west] {$a_2$};
\filldraw[black] (-0.1+1.91,-1.875+1.91*0.995-0.2) circle(2pt) node[anchor=west] {$a_1$};
\draw(3.25,1.25+1)--(7.25,-2.25+1);
\filldraw[black] (4.25,1.375) circle(2pt) node[anchor=west] {$a_3$};
\filldraw[black] (5,0.71875) circle(2pt) node[anchor=west] {$a_4$};
\filldraw[black] (5.75,0.0625) circle(2pt) node[anchor=west] {$a_5$};
\filldraw[black] (6.5,-0.59375) circle(2pt) node[anchor=west] {$a_6$};
\filldraw[black] (6.85,-0.9) circle(2pt) node[anchor=west] {$a_7$};
\node[anchor=west,text width=6.5cm] (note1) at (8,3) {
We have the following Hurwitz correspondence, where the map has degree 2 and where the points are sent as follows:
\\
\centering
$a_{1}\overset{2}\rightarrow b_{1}$\\
$a_{2}\overset{2}\rightarrow b_{2}$\\
$a_{3}\rightarrow b_{3}$\\
$a_{4}\rightarrow b_{4}$\\
$a_{5}\rightarrow b_{5}$\\
$a_{6}\rightarrow b_{6}$\\
$a_{7}\rightarrow b_{7}$\\
};
\end{tikzpicture}
\caption{In this picture we see a Hurwitz correspondence represented by the squaring map. In the picture, we see the ramification (rm) is the following $rm(a_1)=rm(a_2)=2$ and $rm(a_i)=1$ for $i=3,4,5,6,7$. We say that this map has 2 special points, $a_1$ and $a_2$.} \label{fig:M1}
\end{figure}
\end{example}
\end{document}
有人知道为什么会发生这种情况吗?
答案1
您可以figure
按照 cfr 的建议省略环境,或者使用float
包并h
用 替换选项H
。
在您的示例中,只有图形并没有起到什么作用。例如,即使我通过~
图形添加了一个空格,它也会显示在您想要的位置。
另外,下次请发布 MWE。
\documentclass{article}
\usepackage{tikz}
\usepackage{amsmath}
\newtheorem{example}{Example}
\begin{document}
\begin{example}~
\begin{figure}[h]
\begin{tikzpicture}[thick,scale=0.85, every node/.style={scale=0.85}]
\draw [help lines,white!20!white] (-3,-2) grid (10,6);
\draw[white,dashed]
(-2+2,0.5) coordinate(A)
-- (0.8+2,2) coordinate (B)
-- (0.2+2,4) coordinate (C)
-- (-2+2,2) coordinate (D) -- cycle
(A)--(C) (B)--(D);
\draw (A) .. controls (B) and (C) .. (D);
\filldraw[black] (0.15+2,3.15) circle(2pt) node[anchor=west] {$b_2$};
\filldraw[black] (-0.1+2,2.6) circle(2pt) node[anchor=west] {$b_1$};
\draw [help lines,white!20!white] (0,-3) grid (10,7);
\draw[white,dashed]
(4+0.5,5.5) coordinate(A)
-- (-1+3,3.5) coordinate (B)
-- (-1+2,2.1) coordinate (C)
-- (4,4.25) coordinate (D) -- cycle
(A)--(C) (B)--(D);
\draw (A) .. controls (B) and (C) .. (D);
\draw(3.3,5)--(7,3);
\draw(3.05,4)--(7.25,0.5+1);
\filldraw[black] (4.25,4.48648) circle(2pt) node[anchor=west] {$b_3$};
\filldraw[black] (5,2.8392855) circle(2pt) node[anchor=west] {$b_4$};
\filldraw[black] (5.75,3.675671) circle(2pt) node[anchor=west] {$b_5$};
\filldraw[black] (6.5,1.94642) circle(2pt) node[anchor=west] {$b_6$};
\filldraw[black] (6.85,3.0810772) circle(2pt) node[anchor=west] {$b_7$};
\draw(4.25,1.25+1)--(1,-2+1);
\filldraw[black] (0.35+1.9,-1.46+1.8*0.995-0.08) circle(2pt) node[anchor=west] {$a_2$};
\filldraw[black] (-0.1+1.91,-1.875+1.91*0.995-0.2) circle(2pt) node[anchor=west] {$a_1$};
\draw(3.25,1.25+1)--(7.25,-2.25+1);
\filldraw[black] (4.25,1.375) circle(2pt) node[anchor=west] {$a_3$};
\filldraw[black] (5,0.71875) circle(2pt) node[anchor=west] {$a_4$};
\filldraw[black] (5.75,0.0625) circle(2pt) node[anchor=west] {$a_5$};
\filldraw[black] (6.5,-0.59375) circle(2pt) node[anchor=west] {$a_6$};
\filldraw[black] (6.85,-0.9) circle(2pt) node[anchor=west] {$a_7$};
\node[anchor=west,text width=6.5cm] (note1) at (8,3) {
We have the following Hurwitz correspondence, where the map has degree 2 and where the points are sent as follows:
\\
\centering
$a_{1}\overset{2}\rightarrow b_{1}$\\
$a_{2}\overset{2}\rightarrow b_{2}$\\
$a_{3}\rightarrow b_{3}$\\
$a_{4}\rightarrow b_{4}$\\
$a_{5}\rightarrow b_{5}$\\
$a_{6}\rightarrow b_{6}$\\
$a_{7}\rightarrow b_{7}$\\
};
\end{tikzpicture}
\caption{In this picture we see a Hurwitz correspondence represented by the squaring map. In the picture, we see the ramification (rm) is the following $rm(a_1)=rm(a_2)=2$ and $rm(a_i)=1$ for $i=3,4,5,6,7$. We say that this map has 2 special points, $a_1$ and $a_2$.} \label{fig:M1}
\end{figure}
\end{example}
\end{document}