这是一个 MNWE,包含以下定义和列表,但最后一项出现了标题中描述的问题,并且最后一项的缩进没有像其他项目一样缩进;
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\newcommand{\R}{\mathbb{R}}
\newenvironment{definition}{}{}
\begin{document}
\begin{definition}[Two-dimensional curves]
{It is called a simple arc of a curve, the set $C$ of points $M(x,y) \in \R ^2 $
(two-dimensional Euclidean space) satisfying one of the following equivalent equations;}
\begin{itemize}
\item{
$ y=f(x), \text{ where } a,b \in \R \text{ and are also fixed} \text{,}$
}
\item{
$ F(x,y)=0, \text{ } a_1 \leq x \leq a_2,\text{ }b_1 \leq y \leq b_2 \text{ where, } a_1, a_2, b_1, b_2 \in \R \text{,}$
}
\item{
$
\left\{\begin{array}{cll}
x=g(t)\\
y=h(t)
\end{array}\right. \text{, where c_1<t< c_2} \text{ and } c_1,c_2 \in \R
\text{.}$
}
\end{itemize}
\end{definition}
\end{document}
答案1
我使用虚拟环境最小化并完成了您的示例。
c_1<t< c_2
无法在文本模式下设置。需要在数学模式下设置。
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\newcommand{\R}{\mathbb{R}}
\newenvironment{definition}{}{}
\begin{document}
\begin{definition}[Two-dimensional curves]
{It is called a simple arc of a curve, the set $C$ of points $M(x,y) \in \R ^2 $
(two-dimensional Euclidean space) satisfying one of the following equivalent equations;}
\begin{itemize}
\item{
$ y=f(x), \text{ where } a,b \in \R \text{ and are also fixed} \text{,}$
}
\item{
$ F(x,y)=0, \text{ } a_1 \leq x \leq a_2,\text{ }b_1 \leq y \leq b_2 \text{ where, } a_1, a_2, b_1, b_2 \in \R \text{,}$
}
\item{
$
\left\{\begin{array}{cll}
x=g(t)\\
y=h(t)
\end{array}\right. \text{, where }c_1<t< c_2 \text{ and } c_1,c_2 \in \R
\text{.}$
}
\end{itemize}
\end{definition}
\end{document}
答案2
除了解决与不使用数学模式处理数学材料相关的直接问题(如@cfr的回答)之外,您还应该(a)省略不必要的{
和实例}
以进行分组目的 - 特别\item
是不是采取需要用花括号括起来的参数——,(b)更有目的地使用文本和数学模式——所有这些\text
语句实际上都是代码混淆的标志——以及(c)更谨慎地定义一个名为的环境definition
;我建议您加载amsthm
包并使用\newtheorem{definition}{Definition}
指令。
最后,我不得不说,三个要点中有两个似乎缺少了一些东西:、、a
和如何发挥作用?b
c_1
c_2
\documentclass{article}
\usepackage{amsmath,amssymb,amsthm}
\newcommand{\R}{\mathbb{R}}
\theoremstyle{definition}
\newtheorem*{definition}{Definition}
\begin{document}
\begin{definition}[Two-dimensional curves]
The simple arc of a curve is the set $C$ of points $M(x,y)\in\R^2$
(two-dimensional Euclidean space) that satisfy one of the
following equivalent equations:
\begin{itemize}
\item $y=f(x)$, where $a,b\in\R$ and are also fixed,
\item $F(x,y)=0$, $a_1 \leq x \leq a_2,$ $b_1 \leq y \leq b_2$,
where $a_1, a_2, b_1, b_2 \in \R$,
\item $\begin{cases} x=g(t)\\ y=h(t) \end{cases}$
where $c_1<t<c_2$ and $c_1,c_2\in\R$.
\end{itemize}
\end{definition}
\end{document}