如何使下列方程完美对齐?

如何使下列方程完美对齐?

我想在 Theorem 环境下编写以下文本和数学表达式。我希望它们都左对齐。

你能指导我怎样做吗?

\begin{theorem}

The marginal distribution of `$\hat{\theta}_2$, for $-\infty<y<\infty$` is

    \begin{eqnarray*}
    \begin{split}
    f_{\hat{\theta}_2}(y)&=k\binom{n}{k} \sum_{i=0}^{k-1}\frac{\binom{k-1}{i}(-1)^i}{(n-k+1+i)}e^{-\frac{T}{\theta_1}(n-k+1+i)}f_g(y;n-k,\frac{n-k}{\theta_2})\\
    &+\sum_{i=k}^{m-1}\sum_{s=0}^i\binom{n}{i}\binom{i}{s}(-1)^s e^{-\frac{T}{\theta_1} (n-i+s)} f_g(y;n-i,\frac{n-i}{\theta_2})+m\binom{n}{m}\times\\
    &\sum_{i=0}^{m-1} \frac{\binom{m-1}{i}(-1)^i}{n-m+1+i} [1-e^{-\frac{T}{\theta_1}(n-m+1+i)}]f_g(y;n-m,\frac{(n-m)}{\theta_2}
    \end{split}
    \end{eqnarray*}
\end{theorem}

答案1

您可以使用flalign*环境来做到这一点。但我建议也使用环境multline*。以下代码显示了可能性,并对换行点进行了一些修改。我还更改了一些括号的大小:

\documentclass{article}
\usepackage[utf8]{inputenc} %
\usepackage[showframe]{geometry}%
\usepackage{mathtools,nccmath, amsthm}
\usepackage{amsfonts}

\newtheorem{theorem}{Theorem}

\begin{document}

\begin{theorem}
  The marginal distribution of $\hat{\theta }_2$, for $-\infty<y<\infty$ is
  \begin{flalign*}
    f_{\hat{\theta }_2}(y)=k\binom{n}{k} & \smash[t]{\sum_{i=0}^{k-1}\frac{\binom{k-1}{i}(-1)^i}{(n-k+1+i)}e^{-\frac{T}{\theta_1}(n-k+1+i)}f_g\biggl(y;n-k,\frac{n-k}{\theta_2}\biggr)} & & & \\
    {}+{}&\sum_{i=k}^{\mathclap{m-1}}\sum_{s=0}^i\binom{n}{i}\binom{i}{s}(-1)^s e^{-\frac{T}{\theta_1} (n-i+s)} f_g\biggl(y;n-i,\frac{n-i}{\theta_2}\biggr)\\
    {}+{}&m\binom{n}{m}\sum_{i=0}^{m-1} \frac{\binom{m-1}{i}(-1)^i}{n-m+1+i} \Bigl[1-e^{-\frac{T}{\theta_1}(n-m+1+i)}\Bigr]f_g\biggl(y;n-m,\frac{n-m}{\theta_2}\biggr)
  \end{flalign*}
\end{theorem}
\bigskip

\begin{theorem}
  The marginal distribution of $\hat{\theta }_2$, for $-\infty<y<\infty$ is
  \begin{multline*}
    f_{\hat{\theta }_2}(y)=\smash[t]{k\binom{n}{k} \sum_{i=0}^{k-1}\frac{\binom{k-1}{i}(-1)^i}{(n-k+1+i)}e^{-\frac{T}{\theta_1}(n-k+1+i)}f_g\biggl(y;n-k,\frac{n-k}{\theta_2}\biggr)} \\
    {}+\sum_{i=k}^{\mathclap{m-1}}\sum_{s=0}^i\binom{n}{i}\binom{i}{s}(-1)^s e^{-\frac{T}{\theta_1} (n-i+s)} f_g\biggl(y;n-i,\frac{n-i}{\theta_2}\biggr)\\
    {}+m\binom{n}{m}\sum_{i=0}^{m-1} \frac{\binom{m-1}{i}(-1)^i}{n-m+1+i} \Bigl[1-e^{-\frac{T}{\theta_1}(n-m+1+i)}\Bigr]f_g\biggl(y;n-m,\frac{n-m}{\theta_2}\biggr)
  \end{multline*}
\end{theorem}
\bigskip

\begin{theorem}
  The marginal distribution of $\hat{\theta }_2$, for $-\infty<y<\infty$ is
\begin{fleqn}
  \begin{align*}
     & f_{\hat{\theta }_2}(y)=\smash[t]{k\binom{n}{k} \sum_{i=0}^{k-1}\frac{\binom{k-1}{i}(-1)^i}{(n-k+1+i)}e^{-\frac{T}{\theta_1}(n-k+1+i)}f_g\biggl(y;n-k,\frac{n-k}{\theta_2}\biggr)} \\
 & \negthickspace+\sum_{i=k}^{\mathclap{m-1}}\sum_{s=0}^i\binom{n}{i}\binom{i}{s}(-1)^s e^{-\frac{T}{\theta_1} (n-i+s)} f_g\biggl(y;n-i,\frac{n-i}{\theta_2}\biggr)\\
& \negthickspace+m\binom{n}{m}\sum_{i=0}^{m-1} \frac{\binom{m-1}{i}(-1)^i}{n-m+1+i} \Bigl[1-e^{-\frac{T}{\theta_1}(n-m+1+i)}\Bigr]f_g\biggl(y;n-m,\frac{n-m}{\theta_2}\biggr) \end{align*}
\end{fleqn}%
\end{theorem}%

\end{document} 

在此处输入图片描述

相关内容