问题
这个 MWE 有两个总和,每个总和都有延长的限制:
\documentclass{article}
\usepackage{amsmath}
\usepackage{mathtools}
\begin{document}
$\displaystyle x \wedge y =
\sum_{1 \leq i_1 < \ldots < i_p \leq n}
\sum_{1 \leq j_1 < \ldots < j_q \leq n}
a_{i_1 \ldots i_p} b_{j_1 \ldots j_q}
\; \underbrace{e_{i_1} \wedge \ldots \wedge e_{i_p} \wedge e_{j_1} \wedge \ldots \wedge e_{j_q}}_{\text{is sometimes 0}}$
\end{document}
为总和留出大量空间。然而,由于极限太接近,可读性很差。使用smashoperator{}
会导致错误,并且一个极限不再显示。我更喜欢第二个公式(或者在第一个总和的左侧也额外打碎)。
问题
我怎样才能生成图中的第二个公式?(或任何其他好看的“粉碎”结果)
编辑
1) 我发现此代码(仅求和)接近我想要的结果。但是它会产生未定义的控制序列错误:
\smashoperator{\mathop{\smashoperator{\sum_{1 \leq i_1 < \ldots < i_p \leq n}\sum}}_{\qquad 1 \leq j_1 < \ldots < j_q \leq n}}
答案1
也许是这样?在\mathclap
和 的帮助下。根据 Mico 的要求,编辑为和stackengine
进行替换。我希望我正确地理解了他的请求...\ldots
\dots
\cdots
\documentclass{article}
\usepackage{amsmath}
\usepackage{mathtools}
\usepackage{stackengine}
\stackMath
\begin{document}
$\displaystyle x \wedge y =\qquad
\sum_{\mathclap{1 \leq i_1 < \dots < i_p \leq n}}\quad
\sum_{\stackunder[5pt]{}{\scriptstyle\mathclap{1 \leq j_1 < \dots < j_q \leq n}}}
a_{i_1 \dots i_p} b_{j_1 \dots j_q}
\; \underbrace{e_{i_1} \wedge \cdots \wedge e_{i_p} \wedge e_{j_1} \wedge \cdots \wedge e_{j_q}}_{\text{is sometimes 0}}$
\end{document}
答案2
我会只使用一个求和符号;但也可以使用两个。我也会避免使用\smashoperator
,除非空间限制要求尽可能地挤压东西。在这种情况下,我可能只会\mspace{-9mu}
在求和的两边使用左右。
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation*}
x \wedge y =
\sum_{\substack{
1 \leq i_1 < \dots < i_p \leq n \\
1 \leq j_1 < \dots < j_q \leq n
}}
a_{i_1 \ldots i_p} b_{j_1 \dots j_q}
\,
{\underbrace{e_{i_1} \wedge \dots \wedge e_{i_p} \wedge
e_{j_1} \wedge \dots \wedge e_{j_q}}_{\text{is sometimes $0$}}}
\end{equation*}
\begin{equation*}
x \wedge y =
\mathop{\sum\sum}_{\substack{
1 \leq i_1 < \dots < i_p \leq n \\
1 \leq j_1 < \dots < j_q \leq n
}}
a_{i_1 \ldots i_p} b_{j_1 \dots j_q}
\,
{\underbrace{e_{i_1} \wedge \dots \wedge e_{i_p} \wedge
e_{j_1} \wedge \dots \wedge e_{j_q}}_{\text{is sometimes $0$}}}
\end{equation*}
\end{document}
请注意,\dots
应始终使用:在这些情况下,它会产生正确类型的点。
第一次渲染带有一些后退间距:
\begin{equation*}
x \wedge y =
\mspace{-9mu}
\sum_{\substack{
1 \leq i_1 < \dots < i_p \leq n \\
1 \leq j_1 < \dots < j_q \leq n
}}
\mspace{-9mu}
a_{i_1 \ldots i_p} b_{j_1 \dots j_q}
\,
{\underbrace{e_{i_1} \wedge \dots \wedge e_{i_p} \wedge
e_{j_1} \wedge \dots \wedge e_{j_q}}_{\text{is sometimes $0$}}}
\end{equation*}
将下标进一步推到等号下方会引入歧义。
不同的版本。
\documentclass{article}
\usepackage{amsmath}
\begin{document}
An \emph{ordered $n$-multiindex} is a finite sequence $(i_1,i_2,\dots,i_p)$, such that
\[
1\leq i_1<i_2<\dots<i_p\leq n.
\]
The set of $n$-multiindices is denoted by $M(n)$; for $I=(i_1,i_2,\dots,i_p)\in M(n)$
we also set
\[
e_I=e_{i_1} \wedge \dots \wedge e_{i_p}
\]
and note that we have actually proved that $\{e_I:I\in M(n)\}$ is a basis of the
exterior algebra $E(V)$, so any $x\in E(V)$ can be written in a unique way as
\[
x=\sum_{I\in M(n)}a_Ie_I
\]
for $a_I\in F$. Then, if $y=\sum_{J\in M(n)}b_Je_J$, we have
\begin{equation*}
x \wedge y =
\sum_{I,J\in M(n)} a_Ib_J e_I\wedge e_J
\end{equation*}
where $e_I\wedge e_J=0$ if $I$ and $J$ are not disjoint, that is, they have
some element in common.
\end{document}
答案3
我会这样做:
\documentclass{article}
\usepackage{amsmath}
\usepackage{mathtools}
\DeclareMathOperator*{\ssum}{\sum\sum}
\begin{document}
$ \displaystyle x \wedge y =
\smashoperator{\ssum_{\substack{1 \leq i_1 < \dots < i_p \leq n \\1 \leq j_1 < \dots < j_q \leq n}}}
a_{i_1 \dots i_p} b_{j_1 \dots j_q}
\; \underbrace{e_{i_1} \wedge \dots \wedge e_{i_p} \wedge e_{j_1} \wedge \dots \wedge e_{j_q}}_{\text{is sometimes 0}} $
\end{document}
答案4
我将采用以下解决方案:
\documentclass{article}
\usepackage{mathtools} % for "\mathclap" macro
\begin{document}
\[
x\wedge y =
\mathop{\sum\sum}_{\mathclap{\substack{%
1\leq i_1<\dots<i_p\leq n\\[2pt]
1\leq j_1<\dots<j_q\leq n}}}
a_{i_1\dots i_p} b_{j_1 \dots j_q} \dots
\]
\end{document}