我想知道如何将 MWE 中表格第一列变量名称后的括号内文本(t+1 和 t+2 等)对齐?现在我已创建单独的列来对齐括号内的文本。但是,我对结果不太满意。
梅威瑟:
\documentclass[11pt]{article}
\usepackage[textwidth=155mm,top=23.5mm,bottom=23.5mm,
footskip=40pt,heightrounded]{geometry}
\usepackage{rotating}
\usepackage[skip=0.33\baselineskip]{caption}
\usepackage[table,xcdraw]{xcolor}
\usepackage{setspace}
\usepackage{siunitx}
\usepackage{booktabs}
\usepackage{tabularx}
\newcolumntype{L}{>{\raggedright\arraybackslash}X}
\newcommand\vn[1]{\mathrm{#1}}
\onehalfspacing
\begin{document}
\begin{sidewaystable}[H]
\caption{Estimation Results Equation 8}
\sisetup{input-open-uncertainty = ,
input-close-uncertainty = ,
table-align-text-pre = false,
table-align-text-post = false,
round-mode=places,
round-precision=2,
}
\setlength\tabcolsep{0pt}
\small
\begin{tabular*}{\textwidth}{ l l @{\extracolsep{\fill}}
*{12}{S[table-format=-2.2,
table-space-text-post = {***}]} }
\toprule
Variable & & {Austria} & {Belgium} & {Finland} & {France} & {Germany} & {Netherl.} & {Greece} & {Italy} & {Ireland} & {Portugal} & {Spain} \\
\midrule
Constant & & -0.067 & -0.010 & -0.044 & -0.073 & 0.013 & -0.018 & 0.136 & -0.017 & -0.145 & 0.053 & 0.003 \\
QE 1 & ($t{+}1$) & -1.849*** & -1.059 & -0.936*** & -3.690*** & -5.896*** & -4.783*** & 0.639 & 2.053 & 6.530*** & 0.442 & 0.658** \\
QE 1 & ($t{+}2$) & -3.500 & -4.230** & -5.814*** & -5.979*** & -6.244*** & -5.755*** & -10.341** & -3.975*** & 1.967 & -5.376*** & -2.319** \\
QE 2 & ($t{+}1$) & 0.342 & -3.905*** & -0.504* & 0.991*** & -1.894*** & -0.658 & 30.766*** & 5.638*** & 37.893 & 15.763*** & 6.831*** \\
QE 2 & ($t{+}2$) & 0.522* & -3.449*** & -0.855 & 0.594*** & 0.096 & -1.065*** & 11.103*** & -5.017*** & 31.425 & -10.836*** & -6.417*** \\
QE 3 & ($t{+}1$) & -1.864*** & 3.147 & -0.864*** & -0.541* & -3.056*** & -0.774*** & -3.950 & 1.622*** & -2.682*** & 18.524*** & 5.431*** \\
QE 3 & ($t{+}2$) & -1.894*** & -7.920*** & -1.971*** & -1.683*** & -1.470*** & -1.841*** & 26.800*** & -15.558*** & 2.693*** & 0.911 & -12.520*** \\
FG & ($t{+}1$) & -0.410 & 0.341 & 2.411*** & 4.263*** & 3.445*** & 1.053*** & 8.496*** & -11.766*** & -5.652*** & 1.900 & -10.116*** \\
FG & ($t{+}2$) & -8.580*** & -11.539*** & 0.761*** & -11.181*** & 4.038*** & 0.399** & 16.614*** & -9.676*** & -3.559** & -24.045*** & -3.557*** \\
OT & ($t{+}1$) & -1.133** & -2.001 & -1.381*** & -6.644*** & -0.789** & -0.266 & -35.205** & -12.462*** & 10.440*** & -15.524*** & -19.544*** \\
OT & ($t{+}2$) & -2.227 & -6.233*** & -1.103*** & 1.309*** & -0.874 & -1.443*** & 20.981 & 13.201*** & 8.346*** & 14.632*** & 4.904 \\
Taper & ($t{+}1$) & 4.832 & -1.255 & -2.462 & 2.029*** & 0.217 & 3.740*** & 45.099*** & 3.081*** & 11.397*** & -3.917 & 5.224*** \\
Taper & ($t{+}2$) & 11.356 & -2.973 & -11.508 & -0.734 & 1.527*** & -1.603 & 62.386*** & 4.573*** & -7.958*** & -16.712 & 3.125*** \\
\midrule
$VSTOXX$ & & 0.096 & 3.966*** & -1.849* & 1.574* & -6.704*** & -1.683*** & 20.598*** & 14.519*** & 14.253*** & 21.830*** & 15.737*** \\
$CDS$ & & 0.226*** & 0.253*** & -0.085 & 0.163*** & -0.129*** & 0.076*** & 0.035** & 0.526** & 0.349*** & 0.548*** & 0.540*** \\
$Redom$ & & -0.010 & 0.281*** & 0.029 & 0.125*** & & 0.035 & -0.028 & 0.103** & 0.092* & 0.212*** & 0.246*** \\
$BAS$ & & 0.072 & 0.216 & 0.004*** & 0.055* & 1.062** & -0.213 & 0.169 & 0.001 & 0.039 & 0.057 & 0.144 \\
$CESI_{eu}$ & & -0.001 & -0.000 & -0.001 & -0.001 & -0.001** & -0.000 & -0.003 & -0.000 & 0.001 & -0.001 & -0.000 \\
$ECB$& & -0.786 & -1.767** & -1.430** & -1.597*** & -0.788* & -1.453* & -2.866** & -1.484* & -1.805** & -1.782* & -2.131* \\
\midrule
$\Delta y_{t-1}$ & & -0.141** & 0.049 & -0.195*** & -0.142* & -0.185** & -0.149*** & 0.079* & -0.061* & 0.056* & 0.079* & -0.049 \\
$\Delta y_{t-1,\vn{Italy}}$ & & 0.014 & 0.073* & 0.021 & 0.014 & -0.056** & -0.008 & 0.255** & & 0.105* & 0.059 & 0.025 \\
$\Delta y_{t-1,\vn{Spain}}$ & & -0.031 & -0.037* & -0.034 & -0.011 & 0.013 & -0.017 & -0.205 & -0.008 & -0.049 & -0.139* & \\
$\Delta y_{t-1,\vn{Portugal}}$ & & -0.010 & -0.012 & -0.001 & -0.011 & 0.002 & 0.001 & 0.111 & -0.011 & -0.004 & & -0.029* \\
$\Delta y_{t-1,\vn{Ireland}} $ & & 0.033 & 0.024* & 0.022* & 0.035* & 0.016 & 0.001 & -0.020 & 0.027 & & 0.005 & 0.032 \\
$\Delta y_{t-1,\vn{Greece}}$ & & -0.000 & -0.001 & -0.000 & -0.002 & 0.001 & -0.000 & & -0.006* & -0.004 & -0.006 & -0.005** \\
ARCH \\
\midrule
Constant & & 0.177** & 0.540*** & 0.193** & 0.328*** & 0.174*** & 0.183*** & 7.338*** & 0.516*** & 1.309*** & 0.366*** & 0.440** \\
L.arch & & 0.128*** & 0.075*** & 0.151*** & 0.055*** & 0.158*** & 0.167*** & 0.160** & 0.057*** & 0.207*** & 0.218*** & 0.060*** \\
L(2).arch & & -0.092** & & -0.117*** & & -0.129*** & -0.133*** & 0.573* & & 0.279* & -0.159*** & \\
L.garch & & 0.958*** & 0.909*** & 0.960*** & 0.936*** & 0.965*** & 0.959*** & 0.613*** & 0.932*** & 0.517*** & 0.942*** & 0.933*** \\
\midrule
Obs.& & {2111} & {2190} & {2128} & {2039} & {2190} & {2111} & {2190} & {2190} & {1982} & {1965} & {2039}\\
AIC& & 6.072635 & 6.174726 & 6.101 & 6.163 & 6.108 & 6.013 & 9.013 & 6.478 & 6.757 & 7.360 & 6.620 \\
BIC & & 6.150320 & 6.247496 & 6.178 & 6.240 & 6.181 & 6.091 & 9.086 & 6.549 & 6.836 & 7.439 & 6.695 \\
\bottomrule
\end{tabular*}
\medskip
Notes: The table present the estimation results of Eq. (8) for all the countries in the sample. The text in brackets, $(t+i)$ with $i\in(1,2)$, implies that the announcements in the specific QE program dummy equal 1, $i$ days after the official announcement date $t$ described in Table 2 and 0 otherwise. The dependent variables are in first differences and the results are shown in basis points. Bollerslev-Woolridge standard errors have been used to compute the coefficient covariance matrix. *,**,*** denote the 10 percent, 5 percent and 1 percent significance levels, respectively.
\end{sidewaystable}
\end{document}
答案1
这里,我将前两列重新合并为一列,然后将\Q
其引入并应用于表格第一个子集的第 1 列条目。该宏\Q
只为其参数分配了一个固定的左对齐空间。
\newcommand\Q[1]{\makebox[2.75em][l]{#1}}
我应该注意,提供的框宽度\Q
是为该应用程序手动预设的。对于更通用的版本,可以开发宏以将最宽的列内容放在框中,并测量该框的宽度作为指定的宽度\Q
。
这是 MWE。
\documentclass[11pt]{article}
\usepackage[textwidth=155mm,top=23.5mm,bottom=23.5mm,
footskip=40pt,heightrounded]{geometry}
\usepackage{rotating}
\usepackage[skip=0.33\baselineskip]{caption}
\usepackage[table,xcdraw]{xcolor}
\usepackage{setspace}
\usepackage{siunitx}
\usepackage{booktabs}
\usepackage{tabularx}
\newcolumntype{L}{>{\raggedright\arraybackslash}X}
\newcommand\vn[1]{\mathrm{#1}}
\onehalfspacing
\newcommand\Q[1]{\makebox[2.75em][l]{#1}}
\begin{document}
\begin{sidewaystable}[h]
\caption{Estimation Results Equation 8}
\sisetup{input-open-uncertainty = ,
input-close-uncertainty = ,
table-align-text-pre = false,
table-align-text-post = false,
round-mode=places,
round-precision=2,
}
\setlength\tabcolsep{0pt}
\small
\begin{tabular*}{\textwidth}{ l @{\extracolsep{\fill}}
*{12}{S[table-format=-2.2,
table-space-text-post = {***}]} }
\toprule
Variable & {Austria} & {Belgium} & {Finland} & {France} & {Germany} & {Netherl.} & {Greece} & {Italy} & {Ireland} & {Portugal} & {Spain} \\
\midrule
Constant & -0.067 & -0.010 & -0.044 & -0.073 & 0.013 & -0.018 & 0.136 & -0.017 & -0.145 & 0.053 & 0.003 \\
\Q{QE 1} ($t{+}1$) & -1.849*** & -1.059 & -0.936*** & -3.690*** & -5.896*** & -4.783*** & 0.639 & 2.053 & 6.530*** & 0.442 & 0.658** \\
\Q{QE 1} ($t{+}2$) & -3.500 & -4.230** & -5.814*** & -5.979*** & -6.244*** & -5.755*** & -10.341** & -3.975*** & 1.967 & -5.376*** & -2.319** \\
\Q{QE 2} ($t{+}1$) & 0.342 & -3.905*** & -0.504* & 0.991*** & -1.894*** & -0.658 & 30.766*** & 5.638*** & 37.893 & 15.763*** & 6.831*** \\
\Q{QE 2} ($t{+}2$) & 0.522* & -3.449*** & -0.855 & 0.594*** & 0.096 & -1.065*** & 11.103*** & -5.017*** & 31.425 & -10.836*** & -6.417*** \\
\Q{QE 3} ($t{+}1$) & -1.864*** & 3.147 & -0.864*** & -0.541* & -3.056*** & -0.774*** & -3.950 & 1.622*** & -2.682*** & 18.524*** & 5.431*** \\
\Q{QE 3} ($t{+}2$) & -1.894*** & -7.920*** & -1.971*** & -1.683*** & -1.470*** & -1.841*** & 26.800*** & -15.558*** & 2.693*** & 0.911 & -12.520*** \\
\Q{FG} ($t{+}1$) & -0.410 & 0.341 & 2.411*** & 4.263*** & 3.445*** & 1.053*** & 8.496*** & -11.766*** & -5.652*** & 1.900 & -10.116*** \\
\Q{FG} ($t{+}2$) & -8.580*** & -11.539*** & 0.761*** & -11.181*** & 4.038*** & 0.399** & 16.614*** & -9.676*** & -3.559** & -24.045*** & -3.557*** \\
\Q{OT} ($t{+}1$) & -1.133** & -2.001 & -1.381*** & -6.644*** & -0.789** & -0.266 & -35.205** & -12.462*** & 10.440*** & -15.524*** & -19.544*** \\
\Q{OT} ($t{+}2$) & -2.227 & -6.233*** & -1.103*** & 1.309*** & -0.874 & -1.443*** & 20.981 & 13.201*** & 8.346*** & 14.632*** & 4.904 \\
\Q{Taper} ($t{+}1$) & 4.832 & -1.255 & -2.462 & 2.029*** & 0.217 & 3.740*** & 45.099*** & 3.081*** & 11.397*** & -3.917 & 5.224*** \\
\Q{Taper} ($t{+}2$) & 11.356 & -2.973 & -11.508 & -0.734 & 1.527*** & -1.603 & 62.386*** & 4.573*** & -7.958*** & -16.712 & 3.125*** \\
\midrule
$VSTOXX$ & 0.096 & 3.966*** & -1.849* & 1.574* & -6.704*** & -1.683*** & 20.598*** & 14.519*** & 14.253*** & 21.830*** & 15.737*** \\
$CDS$ & 0.226*** & 0.253*** & -0.085 & 0.163*** & -0.129*** & 0.076*** & 0.035** & 0.526** & 0.349*** & 0.548*** & 0.540*** \\
$Redom$ & -0.010 & 0.281*** & 0.029 & 0.125*** & & 0.035 & -0.028 & 0.103** & 0.092* & 0.212*** & 0.246*** \\
$BAS$ & 0.072 & 0.216 & 0.004*** & 0.055* & 1.062** & -0.213 & 0.169 & 0.001 & 0.039 & 0.057 & 0.144 \\
$CESI_{eu}$ & -0.001 & -0.000 & -0.001 & -0.001 & -0.001** & -0.000 & -0.003 & -0.000 & 0.001 & -0.001 & -0.000 \\
$ECB$& -0.786 & -1.767** & -1.430** & -1.597*** & -0.788* & -1.453* & -2.866** & -1.484* & -1.805** & -1.782* & -2.131* \\
\midrule
$\Delta y_{t-1}$ & -0.141** & 0.049 & -0.195*** & -0.142* & -0.185** & -0.149*** & 0.079* & -0.061* & 0.056* & 0.079* & -0.049 \\
$\Delta y_{t-1,\vn{Italy}}$ & 0.014 & 0.073* & 0.021 & 0.014 & -0.056** & -0.008 & 0.255** & & 0.105* & 0.059 & 0.025 \\
$\Delta y_{t-1,\vn{Spain}}$ & -0.031 & -0.037* & -0.034 & -0.011 & 0.013 & -0.017 & -0.205 & -0.008 & -0.049 & -0.139* & \\
$\Delta y_{t-1,\vn{Portugal}}$ & -0.010 & -0.012 & -0.001 & -0.011 & 0.002 & 0.001 & 0.111 & -0.011 & -0.004 & & -0.029* \\
$\Delta y_{t-1,\vn{Ireland}} $ & 0.033 & 0.024* & 0.022* & 0.035* & 0.016 & 0.001 & -0.020 & 0.027 & & 0.005 & 0.032 \\
$\Delta y_{t-1,\vn{Greece}}$ & -0.000 & -0.001 & -0.000 & -0.002 & 0.001 & -0.000 & & -0.006* & -0.004 & -0.006 & -0.005** \\
ARCH \\
\midrule
Constant & 0.177** & 0.540*** & 0.193** & 0.328*** & 0.174*** & 0.183*** & 7.338*** & 0.516*** & 1.309*** & 0.366*** & 0.440** \\
L.arch & 0.128*** & 0.075*** & 0.151*** & 0.055*** & 0.158*** & 0.167*** & 0.160** & 0.057*** & 0.207*** & 0.218*** & 0.060*** \\
L(2).arch & -0.092** & & -0.117*** & & -0.129*** & -0.133*** & 0.573* & & 0.279* & -0.159*** & \\
L.garch & 0.958*** & 0.909*** & 0.960*** & 0.936*** & 0.965*** & 0.959*** & 0.613*** & 0.932*** & 0.517*** & 0.942*** & 0.933*** \\
\midrule
Obs.& {2111} & {2190} & {2128} & {2039} & {2190} & {2111} & {2190} & {2190} & {1982} & {1965} & {2039}\\
AIC& 6.072635 & 6.174726 & 6.101 & 6.163 & 6.108 & 6.013 & 9.013 & 6.478 & 6.757 & 7.360 & 6.620 \\
BIC & 6.150320 & 6.247496 & 6.178 & 6.240 & 6.181 & 6.091 & 9.086 & 6.549 & 6.836 & 7.439 & 6.695 \\
\bottomrule
\end{tabular*}
\medskip
Notes: The table present the estimation results of Eq. (8) for all the countries in the sample. The text in brackets, $(t+i)$ with $i\in(1,2)$, implies that the announcements in the specific QE program dummy equal 1, $i$ days after the official announcement date $t$ described in Table 2 and 0 otherwise. The dependent variables are in first differences and the results are shown in basis points. Bollerslev-Woolridge standard errors have been used to compute the coefficient covariance matrix. *,**,*** denote the 10 percent, 5 percent and 1 percent significance levels, respectively.
\end{sidewaystable}
\end{document}