以实际方程代替参考方程的方程列表

以实际方程代替参考方程的方程列表

我正在尝试创建类似的东西:

在此处输入图片描述

我已经看到了一些解决方案,其中方程式列表创建了方程式引用的列表,但是我怎样才能在列表中显示实际的方程式呢?

以下是代码示例:

\documentclass[12pt,oneside,openany]{book}

%packages
  \usepackage[utf8]{inputenc}
  \usepackage[english]{babel}
  \usepackage{fancyhdr}
  \usepackage{amsmath, amsfonts}
  \usepackage{graphicx}
  \graphicspath{{images/}}
  \usepackage{float}
  \renewcommand{\headrulewidth}{2pt}
  \renewcommand{\footrulewidth}{1pt}
  \newcommand\tab[1][1cm]{\hspace*{#1}}
  \setlength\parindent{0pt}
  \usepackage[letterpaper, portrait, left=1in,right=1in,bottom=1in,top=1in]{geometry}
  \pagestyle{fancy}
  \fancyhf{}
  \fancyhead[R]{}
  \fancyhead[L]{}
  \fancyhead[C]{}
  \fancyfoot[C]{\thepage}
  \usepackage{appendix}
  \usepackage{listings}
  \usepackage{color}

  % BOX around the answers
  \usepackage[many]{tcolorbox}

  % Hyperlinks and contents panel
  \usepackage[hidelinks,bookmarksopen=true]{hyperref}

  \definecolor{mycolor}{rgb}{0.122,0.435,0.698}

  % Define the box
  \newtcolorbox{mybox}[1]{colback=blue!5!white,colframe=blue!75!black,fonttitle=\bfseries,title=#1,width=0.5\textwidth}

  % Redefine the plain page style
  \fancypagestyle{plain}{%
    \fancyhf{}%
    \fancyfoot[C]{\thepage}%
    \renewcommand{\headrulewidth}{0pt}% Line at the header invisible
    \renewcommand{\footrulewidth}{0.4pt}% Line at the footer visible
  }



\begin{document}
%TITLE PAGE
    \begin{titlepage}
        \centering

        {\scshape\LARGE Title of Document\par}


        \vfill

      % Bottom of the page
        {\large \today\par}
    \end{titlepage}

% TABLES OF CONTENT
  \tableofcontents

  \listoffigures

  \listoftables

% Body of the document
%Chapter 1
\chapter{Fundamentals of Fluid Flow in Porous Media}
\section{Calculation of Pressures Beyond the Wellbore with the Line Source Solution}

    A well and reservoir have the following characteristics. The well is producing only oil at a constant rate of 20 STB/D. The following data describe the well and formation.

    \begin{flalign*}
      && q &= 20 \text{ STB/D}&&&&&&&&&&&&&&&&&\\
      && h &= 150 \text{ ft}\\
      && B &= 1.475 \text{ RB/STB} \\
      && r_e &= 3000 \text{ ft} \\
      && p_i &= 3000 \text{ psia}  \\
      && \phi &= 0.23 \\
      && c_t &= 1.5 \times 10^{-5} \text{ psi}^{-1}\\
      && \mu &= 0.72 \text{ cp}\\
      && r_w &= 0.5 \text{ ft} \\
      && k &= 0.1 \text{ md} \\
    \end{flalign*}

    Calculate the reservoir pressure at a radius of 1 ft after 3 hours of production; then, calculate the pressure at radii of 10 and 100 ft after 3 hours of production.\newline

    \textbf{Solution}\newline
    To calculate the pressure in the reservoir with the $Ei(-x) $ approximation, the line source solution equation (eq. \ref{linsource}) is used


    \begin{equation}\label{linsource}
    p = p_i + 70.6\frac{qB\mu}{kh}Ei\left(-\frac{948\phi \mu c_tr^2}{kt}\right)
    \end{equation}

    In order to apply the line source solution, the conditions per equation \ref{lincon} must be met.

    \begin{equation}\label{lincon}
    \frac{\left(3.975 \times 10^5\right) \phi \mu c_t r^{2}_w}{k} < t < \frac{948 \phi \mu c_t r^{2}_e}{k}
    \end{equation}

    Equation \ref{lincon} simplifies to
    \[2.453 \text{ hours} < t < 211.935 \text{ hours}\]
    Therefore, the $Ei(-x)$ approximation can be applied for $t=3$ hours. By substituting the value of $r$ for the different cases using eq. \ref{linsource}, the pressure values are calculated as shown in table \ref{table:1}. Note that while Lee, Rollins and Spivey (LRS) used a table to look up the values of $Ei(-x)$, the value can be easily calculated with currently available programs such as Matlab or Python.

    \begin{table}[h!]
    \centering
    \caption{Reservoir Pressure at 3 Hours of Production with $Ei(-x)$ Solution}
    \begin{tabular}{|c | c | c|}
    \hline
    $r$ (ft) & Pressure (psia) & Pressure From LRS Book (psia)\\
    \hline\hline
    1 & 2572.34 & 2573\\
    10 & 2968.09 & 2968\\
    100 & 3000.00 & 3000\\
    \hline
    \end{tabular}
    \label{table:1}
    \end{table}

\end{document}

相关内容