我正在尝试创建类似的东西:
我已经看到了一些解决方案,其中方程式列表创建了方程式引用的列表,但是我怎样才能在列表中显示实际的方程式呢?
以下是代码示例:
\documentclass[12pt,oneside,openany]{book}
%packages
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{fancyhdr}
\usepackage{amsmath, amsfonts}
\usepackage{graphicx}
\graphicspath{{images/}}
\usepackage{float}
\renewcommand{\headrulewidth}{2pt}
\renewcommand{\footrulewidth}{1pt}
\newcommand\tab[1][1cm]{\hspace*{#1}}
\setlength\parindent{0pt}
\usepackage[letterpaper, portrait, left=1in,right=1in,bottom=1in,top=1in]{geometry}
\pagestyle{fancy}
\fancyhf{}
\fancyhead[R]{}
\fancyhead[L]{}
\fancyhead[C]{}
\fancyfoot[C]{\thepage}
\usepackage{appendix}
\usepackage{listings}
\usepackage{color}
% BOX around the answers
\usepackage[many]{tcolorbox}
% Hyperlinks and contents panel
\usepackage[hidelinks,bookmarksopen=true]{hyperref}
\definecolor{mycolor}{rgb}{0.122,0.435,0.698}
% Define the box
\newtcolorbox{mybox}[1]{colback=blue!5!white,colframe=blue!75!black,fonttitle=\bfseries,title=#1,width=0.5\textwidth}
% Redefine the plain page style
\fancypagestyle{plain}{%
\fancyhf{}%
\fancyfoot[C]{\thepage}%
\renewcommand{\headrulewidth}{0pt}% Line at the header invisible
\renewcommand{\footrulewidth}{0.4pt}% Line at the footer visible
}
\begin{document}
%TITLE PAGE
\begin{titlepage}
\centering
{\scshape\LARGE Title of Document\par}
\vfill
% Bottom of the page
{\large \today\par}
\end{titlepage}
% TABLES OF CONTENT
\tableofcontents
\listoffigures
\listoftables
% Body of the document
%Chapter 1
\chapter{Fundamentals of Fluid Flow in Porous Media}
\section{Calculation of Pressures Beyond the Wellbore with the Line Source Solution}
A well and reservoir have the following characteristics. The well is producing only oil at a constant rate of 20 STB/D. The following data describe the well and formation.
\begin{flalign*}
&& q &= 20 \text{ STB/D}&&&&&&&&&&&&&&&&&\\
&& h &= 150 \text{ ft}\\
&& B &= 1.475 \text{ RB/STB} \\
&& r_e &= 3000 \text{ ft} \\
&& p_i &= 3000 \text{ psia} \\
&& \phi &= 0.23 \\
&& c_t &= 1.5 \times 10^{-5} \text{ psi}^{-1}\\
&& \mu &= 0.72 \text{ cp}\\
&& r_w &= 0.5 \text{ ft} \\
&& k &= 0.1 \text{ md} \\
\end{flalign*}
Calculate the reservoir pressure at a radius of 1 ft after 3 hours of production; then, calculate the pressure at radii of 10 and 100 ft after 3 hours of production.\newline
\textbf{Solution}\newline
To calculate the pressure in the reservoir with the $Ei(-x) $ approximation, the line source solution equation (eq. \ref{linsource}) is used
\begin{equation}\label{linsource}
p = p_i + 70.6\frac{qB\mu}{kh}Ei\left(-\frac{948\phi \mu c_tr^2}{kt}\right)
\end{equation}
In order to apply the line source solution, the conditions per equation \ref{lincon} must be met.
\begin{equation}\label{lincon}
\frac{\left(3.975 \times 10^5\right) \phi \mu c_t r^{2}_w}{k} < t < \frac{948 \phi \mu c_t r^{2}_e}{k}
\end{equation}
Equation \ref{lincon} simplifies to
\[2.453 \text{ hours} < t < 211.935 \text{ hours}\]
Therefore, the $Ei(-x)$ approximation can be applied for $t=3$ hours. By substituting the value of $r$ for the different cases using eq. \ref{linsource}, the pressure values are calculated as shown in table \ref{table:1}. Note that while Lee, Rollins and Spivey (LRS) used a table to look up the values of $Ei(-x)$, the value can be easily calculated with currently available programs such as Matlab or Python.
\begin{table}[h!]
\centering
\caption{Reservoir Pressure at 3 Hours of Production with $Ei(-x)$ Solution}
\begin{tabular}{|c | c | c|}
\hline
$r$ (ft) & Pressure (psia) & Pressure From LRS Book (psia)\\
\hline\hline
1 & 2572.34 & 2573\\
10 & 2968.09 & 2968\\
100 & 3000.00 & 3000\\
\hline
\end{tabular}
\label{table:1}
\end{table}
\end{document}