Multicol 边框与枚举重叠

Multicol 边框与枚举重叠

我怎样才能固定列分隔符的位置,以使其不与项目编号重叠,而不改变的值\columnsep

我的代码:

\documentclass[12pt]{article}
\usepackage[paperheight=11in, paperwidth=8.5in,margin=1in]{geometry}
\usepackage{mathtools}
\usepackage{amssymb}
\usepackage{multicol}
\pagenumbering{gobble}
\setlength{\columnsep}{1cm}
\setlength{\columnseprule}{1pt}
\begin{document}
    \noindent
    \begin{center}Answer Key\end{center}
    \begin{enumerate}
        \begin{multicols*}{2}
            \item   % Number 1
            \begin{align*}
                 &\implies \log\tfrac{z^2 y^{\frac{3}{2}}}{x^3} \\
                 &\implies \log z^2 + \log y^{\frac{3}{2}} - \log x^3 \\
                 &\implies 2\log z + \tfrac{3}{2} \log y - 3 \log x
            \end{align*}
            \item   % Number 2
            \begin{align*}
                &\implies \ln\tfrac{x^5}{y^6}-\ln\tfrac{x^2}{z^2}+\ln\tfrac{y^4}{z^5} \\
                &\implies \ln\tfrac{x^5}{y^2 z^5}-\ln\tfrac{x^2}{y^2} \\
                &\implies \ln\tfrac{x^3}{y^2 z^3}
            \end{align*}
            \item   % Number 3
            Let $p=\tfrac{\log 5}{\log 4}$:
            \begin{align*}
                \log 4^{2x+3}&=\log 5^{x-2} \\
                (2x+3)\log 4 &=(x-2)\log 5 \\
                x&=\tfrac{2p+3}{p-2} \\
                \therefore x&=\tfrac{\log 1600}{\log 5 -\log 16}\approx -6.34
            \end{align*}
            \item   % Number 4
            \begin{align*}
                x^2&=\log_2 5 \\
                \therefore x&=\sqrt{\log_2 5}\approx 1.52 
            \end{align*}
            \item   % Number 5
            \begin{align*}
                5x+1&=6 \\
                x&=1 \\
                \therefore S&=\lbrace 1 \rbrace
            \end{align*}
            \item   % Number 6
            \begin{align*}
                \log_6 \tfrac{x+4}{x-1}&=1 \\
                6 &= \tfrac{x+4}{x-1} \\
                6x-6&=x+4 \\
                x&=2 \\
                \therefore S&=\lbrace 2 \rbrace         
            \end{align*}
            \item   % Number 7
            \begin{align*}
            \ln 2x &= \ln (x+2) \\
            2x&=x+2 \\
            x&=2 \\
            \therefore S&=\lbrace 2 \rbrace
            \end{align*}
            \item   % Number 8
            \begin{align*}
                \log_2 (x-3) + \log_2 4 - 3 &= \log_2 (x+3)\\
                \log_2 (4x-12) - 3 &= \log_2 (x+3)\\
                \log_2 \tfrac{x+3}{4x-12} &= 3 \\
                8 &= \tfrac{x+3}{4x-12} \\
                x &= \tfrac{99}{31} \\
                \therefore S&=\lbrace \tfrac{99}{31} \rbrace
            \end{align*}
            \item   % Number 9
            \begin{align*}
                \log x &= 100 \\
                x &= 10^{100} \\
                \therefore S&=\lbrace 10^{100} \rbrace
            \end{align*}
            \item   % Number 10
            Let $p=5^x$:
            \begin{align*}
                3p^2+5p-2&=0 \\
                p&=\tfrac{1}{3} \\
                \tfrac{1}{3}&=5^x \\
                x&=\log_5 \tfrac{1}{3} \\
                \therefore S&=\lbrace \log_5 \tfrac{1}{3} \rbrace
            \end{align*}
        \end{multicols*}
    \end{enumerate}
\end{document}

答案1

enumerate应该 里面多列。我还使用了适合的枚举参数:

\documentclass[12pt]{article}
\usepackage[paperheight=11in, paperwidth=8.5in,margin=1in]{geometry}
\usepackage{mathtools, nccmath}
\usepackage{amssymb}
\usepackage{multicol}
\usepackage{enumitem}
\pagenumbering{gobble}
\setlength{\columnsep}{1cm}
\setlength{\columnseprule}{1pt}
\begin{document}

    \noindent
    \begin{center}Answer Key\end{center}
        \begin{multicols*}{2}
    \begin{enumerate}[wide=0pt, leftmargin=*]
            \item % Number 1
           $ \begin{aligned}[t]
                 &\implies \log\tfrac{z^2 y^{\frac{3}{2}}}{x^3} \\
                 &\implies \log z^2 + \log y^{\frac{3}{2}} - \log x^3 \\
                 &\implies 2\log z + \tfrac{3}{2} \log y - 3 \log x
            \end{aligned} $
            \item % Number 2
           $ \begin{aligned}[t]
                &\implies \ln\tfrac{x^5}{y^6}-\ln\tfrac{x^2}{z^2}+\ln\tfrac{y^4}{z^5} \\
                &\implies \ln\tfrac{x^5}{y^2 z^5}-\ln\tfrac{x^2}{y^2} \\
                &\implies \ln\tfrac{x^3}{y^2 z^3}
            \end{aligned} $
            \item % Number 3
            Let $p=\tfrac{\log 5}{\log 4}$:
            \begin{fleqn}\begin{align*}
                \log 4^{2x+3}&=\log 5^{x-2} \\
                (2x+3)\log 4 &=(x-2)\log 5 \\
                x&=\tfrac{2p+3}{p-2} \\
                \therefore x&=\tfrac{\log 1600}{\log 5 -\log 16}\approx -6.34
            \end{align*}
\end{fleqn}
\item % Number 4
           $ \begin{aligned}[t]
                x^2&=\log_2 5 \\
                \therefore x&=\sqrt{\log_2 5}\approx 1.52
            \end{aligned} $
            \item % Number 5
            $ \begin{aligned}
                5x+1&=6 \\
                x&=1 \\
                \therefore S&=\lbrace 1 \rbrace
            \end{aligned} $
            \item % Number 6
           $ \begin{aligned}[t]
                \log_6 \tfrac{x+4}{x-1}&=1 \\
                6 &= \tfrac{x+4}{x-1} \\
                6x-6&=x+4 \\
                x&=2 \\
                \therefore S&=\lbrace 2 \rbrace
            \end{aligned} $
            \item % Number 7
            $ \begin{aligned}[t]
            \ln 2x &= \ln (x+2) \\
            2x&=x+2 \\
            x&=2 \\
            \therefore S&=\lbrace 2 \rbrace
            \end{aligned} $
            \item % Number 8
            $ \begin{aligned}[t]
                \log_2 (x-3) + \log_2 4 - 3 &= \log_2 (x+3)\\
                \log_2 (4x-12) - 3 &= \log_2 (x+3)\\
                \log_2 \tfrac{x+3}{4x-12} &= 3 \\
                8 &= \tfrac{x+3}{4x-12} \\
                x &= \tfrac{99}{31} \\
                \therefore S&=\lbrace \tfrac{99}{31} \rbrace
            \end{aligned} $
            \item % Number 9
            $ \begin{aligned}[t]
                \log x &= 100 \\
                x &= 10^{100} \\
                \therefore S&=\lbrace 10^{100} \rbrace
            \end{aligned} $
            \item % Number 10
            Let $p=5^x$:
            \begin{fleqn}\begin{align*}
                3p^2+5p-2&=0 \\
                p&=\tfrac{1}{3} \\
                \tfrac{1}{3}&=5^x \\
                x&=\log_5 \tfrac{1}{3} \\
                \therefore S&=\lbrace \log_5 \tfrac{1}{3} \rbrace
            \end{align*}
\end{fleqn}
    \end{enumerate}
        \end{multicols*}

\end{document} 

在此处输入图片描述

相关内容