我怎样才能固定列分隔符的位置,以使其不与项目编号重叠,而不改变的值\columnsep
?
我的代码:
\documentclass[12pt]{article}
\usepackage[paperheight=11in, paperwidth=8.5in,margin=1in]{geometry}
\usepackage{mathtools}
\usepackage{amssymb}
\usepackage{multicol}
\pagenumbering{gobble}
\setlength{\columnsep}{1cm}
\setlength{\columnseprule}{1pt}
\begin{document}
\noindent
\begin{center}Answer Key\end{center}
\begin{enumerate}
\begin{multicols*}{2}
\item % Number 1
\begin{align*}
&\implies \log\tfrac{z^2 y^{\frac{3}{2}}}{x^3} \\
&\implies \log z^2 + \log y^{\frac{3}{2}} - \log x^3 \\
&\implies 2\log z + \tfrac{3}{2} \log y - 3 \log x
\end{align*}
\item % Number 2
\begin{align*}
&\implies \ln\tfrac{x^5}{y^6}-\ln\tfrac{x^2}{z^2}+\ln\tfrac{y^4}{z^5} \\
&\implies \ln\tfrac{x^5}{y^2 z^5}-\ln\tfrac{x^2}{y^2} \\
&\implies \ln\tfrac{x^3}{y^2 z^3}
\end{align*}
\item % Number 3
Let $p=\tfrac{\log 5}{\log 4}$:
\begin{align*}
\log 4^{2x+3}&=\log 5^{x-2} \\
(2x+3)\log 4 &=(x-2)\log 5 \\
x&=\tfrac{2p+3}{p-2} \\
\therefore x&=\tfrac{\log 1600}{\log 5 -\log 16}\approx -6.34
\end{align*}
\item % Number 4
\begin{align*}
x^2&=\log_2 5 \\
\therefore x&=\sqrt{\log_2 5}\approx 1.52
\end{align*}
\item % Number 5
\begin{align*}
5x+1&=6 \\
x&=1 \\
\therefore S&=\lbrace 1 \rbrace
\end{align*}
\item % Number 6
\begin{align*}
\log_6 \tfrac{x+4}{x-1}&=1 \\
6 &= \tfrac{x+4}{x-1} \\
6x-6&=x+4 \\
x&=2 \\
\therefore S&=\lbrace 2 \rbrace
\end{align*}
\item % Number 7
\begin{align*}
\ln 2x &= \ln (x+2) \\
2x&=x+2 \\
x&=2 \\
\therefore S&=\lbrace 2 \rbrace
\end{align*}
\item % Number 8
\begin{align*}
\log_2 (x-3) + \log_2 4 - 3 &= \log_2 (x+3)\\
\log_2 (4x-12) - 3 &= \log_2 (x+3)\\
\log_2 \tfrac{x+3}{4x-12} &= 3 \\
8 &= \tfrac{x+3}{4x-12} \\
x &= \tfrac{99}{31} \\
\therefore S&=\lbrace \tfrac{99}{31} \rbrace
\end{align*}
\item % Number 9
\begin{align*}
\log x &= 100 \\
x &= 10^{100} \\
\therefore S&=\lbrace 10^{100} \rbrace
\end{align*}
\item % Number 10
Let $p=5^x$:
\begin{align*}
3p^2+5p-2&=0 \\
p&=\tfrac{1}{3} \\
\tfrac{1}{3}&=5^x \\
x&=\log_5 \tfrac{1}{3} \\
\therefore S&=\lbrace \log_5 \tfrac{1}{3} \rbrace
\end{align*}
\end{multicols*}
\end{enumerate}
\end{document}
答案1
这enumerate
应该 里面多列。我还使用了适合的枚举参数:
\documentclass[12pt]{article}
\usepackage[paperheight=11in, paperwidth=8.5in,margin=1in]{geometry}
\usepackage{mathtools, nccmath}
\usepackage{amssymb}
\usepackage{multicol}
\usepackage{enumitem}
\pagenumbering{gobble}
\setlength{\columnsep}{1cm}
\setlength{\columnseprule}{1pt}
\begin{document}
\noindent
\begin{center}Answer Key\end{center}
\begin{multicols*}{2}
\begin{enumerate}[wide=0pt, leftmargin=*]
\item % Number 1
$ \begin{aligned}[t]
&\implies \log\tfrac{z^2 y^{\frac{3}{2}}}{x^3} \\
&\implies \log z^2 + \log y^{\frac{3}{2}} - \log x^3 \\
&\implies 2\log z + \tfrac{3}{2} \log y - 3 \log x
\end{aligned} $
\item % Number 2
$ \begin{aligned}[t]
&\implies \ln\tfrac{x^5}{y^6}-\ln\tfrac{x^2}{z^2}+\ln\tfrac{y^4}{z^5} \\
&\implies \ln\tfrac{x^5}{y^2 z^5}-\ln\tfrac{x^2}{y^2} \\
&\implies \ln\tfrac{x^3}{y^2 z^3}
\end{aligned} $
\item % Number 3
Let $p=\tfrac{\log 5}{\log 4}$:
\begin{fleqn}\begin{align*}
\log 4^{2x+3}&=\log 5^{x-2} \\
(2x+3)\log 4 &=(x-2)\log 5 \\
x&=\tfrac{2p+3}{p-2} \\
\therefore x&=\tfrac{\log 1600}{\log 5 -\log 16}\approx -6.34
\end{align*}
\end{fleqn}
\item % Number 4
$ \begin{aligned}[t]
x^2&=\log_2 5 \\
\therefore x&=\sqrt{\log_2 5}\approx 1.52
\end{aligned} $
\item % Number 5
$ \begin{aligned}
5x+1&=6 \\
x&=1 \\
\therefore S&=\lbrace 1 \rbrace
\end{aligned} $
\item % Number 6
$ \begin{aligned}[t]
\log_6 \tfrac{x+4}{x-1}&=1 \\
6 &= \tfrac{x+4}{x-1} \\
6x-6&=x+4 \\
x&=2 \\
\therefore S&=\lbrace 2 \rbrace
\end{aligned} $
\item % Number 7
$ \begin{aligned}[t]
\ln 2x &= \ln (x+2) \\
2x&=x+2 \\
x&=2 \\
\therefore S&=\lbrace 2 \rbrace
\end{aligned} $
\item % Number 8
$ \begin{aligned}[t]
\log_2 (x-3) + \log_2 4 - 3 &= \log_2 (x+3)\\
\log_2 (4x-12) - 3 &= \log_2 (x+3)\\
\log_2 \tfrac{x+3}{4x-12} &= 3 \\
8 &= \tfrac{x+3}{4x-12} \\
x &= \tfrac{99}{31} \\
\therefore S&=\lbrace \tfrac{99}{31} \rbrace
\end{aligned} $
\item % Number 9
$ \begin{aligned}[t]
\log x &= 100 \\
x &= 10^{100} \\
\therefore S&=\lbrace 10^{100} \rbrace
\end{aligned} $
\item % Number 10
Let $p=5^x$:
\begin{fleqn}\begin{align*}
3p^2+5p-2&=0 \\
p&=\tfrac{1}{3} \\
\tfrac{1}{3}&=5^x \\
x&=\log_5 \tfrac{1}{3} \\
\therefore S&=\lbrace \log_5 \tfrac{1}{3} \rbrace
\end{align*}
\end{fleqn}
\end{enumerate}
\end{multicols*}
\end{document}