问题

问题

介绍

我目前正在完成我的论文。为了遵循导师制定的学术标准,我需要尽可能地模仿下图所示的文档样式。

图片

第2章

第2.1节

问题

我目前所得到的如下所示。页面格式正确,我能够模仿标题。但是字体似乎不对,章节和部分的大小似乎不对。

抱歉,我无法使用扫描仪或 PDF 格式的文档。有没有更简单的方法(或者这种样式已知吗?),或者我必须对所有内容进行硬编码才能匹配上面的图像?

代码

\documentclass[pdftex,
                 10pt, 
              b5paper, 
              twoside, 
                english,
                dvipsnames,
                leqno]{book}

                
\usepackage[lmargin=25mm,
            rmargin=25mm,
            tmargin=27mm,
            bmargin=30mm]{geometry}


    \usepackage{sectsty} %Centers chapters, sections and subsections. 
        \chapterfont{\centering}
        \sectionfont{\centering}
        \subsectionfont{\centering}
        \chapternumberfont{\centering \scshape} 


    \usepackage{xpatch} %Makes the proof environment cursive
    \xpatchcmd{\proof}{\scshape}{\scshape\proofnameformat}{}{}
    \newcommand{\proofnameformat}{\scshape}
    
    
    \usepackage{lipsum}
    
    % Math needs to be loaded before amsthm, so QED can hook into align*
    \usepackage{amsmath, amssymb, mathrsfs, mathtools, amsopn} %Mathematical symbols
        
        \usepackage[amsmath, amsthm, thmmarks]{ntheorem} %Defines theorems and definitions
        %
        % Note that we use the same counter [mydef] for definitions, theorems, lemmas, propositions and corolaries
        \theoremstyle{definition} %Non cursive
            \newtheorem{mydef}{\normalfont\scshape Definition\normalfont}[section]
            \newtheorem*{remark}{\normalfont\scshape Remark\normalfont}
        
        \theoremstyle{plain} %cursive 
            \newtheorem{mylemma}[mydef]{\normalfont\scshape Lemma\normalfont}
            \newtheorem{myprop}[mydef]{\normalfont\scshape Proposition\normalfont}
            \newtheorem{mythe}[mydef]{\normalfont\scshape Theorem\normalfont}
            \newtheorem{mycor}[mydef]{\normalfont\scshape Corollary\normalfont}    

\begin{document}

\stepcounter{chapter}

\chapter{Smooth numbers}

\begin{mydef}
    \lipsum[66]
\end{mydef}

\section{Dickman's function}

In this section, we study \emph{Dickman's function} The function $\rho \colon \mathbb{R} \to \mathbb{R}$ is defined by the initial condition $\rho(u) = 1$ for $0 \leq u \leq 1$ and recursively
%
\begin{align}
    \rho(u) = \rho(k) + \int_k^u \rho(v-1) \frac{\mathrm{d}v}v, \quad k \in \mathbb{N}.
\end{align}
%
We obtain the following properties of the Dickman's function. 
\begin{mylemma}
    \lipsum[75]
\end{mylemma}
%
\begin{proof}
    \lipsum[66]
\end{proof}

\end{document}

答案1

如果我理解得没错的话,这里有一个代码,它应该能满足您的要求。我从中删除了选项,amsthmntheorem使用 的工具从头定义了您的环境ntheorem。对于部分布局,我使用了 titlesec。我还简化了代码,不加载由其他包加载的包(例如“amsopn is loaded byamsmath , which is loaded bymathtools”)。

\documentclass[10pt, b5paper, twoside, english, dvipsnames, leqno]{book}

\usepackage[hmargin=25mm, tmargin=27mm, bmargin=30mm]{geometry}

\usepackage{titlesec}
\titleformat{\chapter}[display]{\centering}{\Large\MakeUppercase{\chaptername~\thechapter}}{2\baselineskip}{\LARGE\bfseries}
\titleformat{\section}[block]{\large\bfseries\centering}{\thesection.}{0.5em}{}

\usepackage{lipsum}

% Math needs to be loaded before amsthm, so QED can hook into align*
\usepackage{ amssymb, mathrsfs, mathtools} %Mathematical symbols

\usepackage[amsmath, thmmarks, thref]{ntheorem} %Defines theorems and definitions amsthm,
\theoremstyle{plain} %Non cursive
\theoremheaderfont{\scshape\mdseries}
\theorembodyfont{\normalfont}
\theoremseparator{.}
    \newtheorem{mydef}{Definition}[section]
    \newtheorem*{remark}{\normalfont\scshape Remark\normalfont}
\theorembodyfont{\itshape}
    \newtheorem{mylemma}[mydef]{Lemma}
    \newtheorem{myprop}[mydef]{Proposition}
    \newtheorem{mythe}[mydef]{Theorem}
    \newtheorem{mycor}[mydef]{Corollary}

\theoremstyle{nonumberplain}
\theoremheaderfont{\itshape}
\theorembodyfont{\normalfont}
\theoremsymbol{\ensuremath{\square}}
\newtheorem{proof}{Proof}

\begin{document}

\stepcounter{chapter}

\chapter{Smooth numbers}

\begin{mydef}
  \lipsum[66]
\end{mydef}

\section{Dickman's function}

In this section, we study \emph{Dickman's function} The function $ρ\colon \mathbb{R} \to \mathbb{R}$ is defined by the initial condition $ρ(u) = 1$ for $0 \leq u \leq 1$ and recursively
%
\begin{align}
  ρ(u) = ρ(k) + ∫_k^u ρ(v-1) \frac{\mathrm{d}v}v, \quad k ∈ \mathbb{N}.
\end{align}
%
We obtain the following properties of the Dickman's function.
\begin{mylemma}
  \lipsum[75]
\end{mylemma}

\begin{proof}
  Nunc sed pede. Praesent vitae lectus. Praesent neque justo, vehicula eget,
  interdum id, facilisis et, nibh. Phasellus at purus et libero lacinia dictum. Fusce
  aliquet. Nulla eu ante placerat leo semper dictum. Mauris metus. Curabitur
  lobortis. Curabitur sollicitudin hendrerit nunc. Donec ultrices lacus id ipsum.
\end{proof}

在此处输入图片描述 \结束{文档}

相关内容