我正在写一篇数学论文,我使用的\footcite{}
是必需的引用格式,但上标在方程旁边看起来非常像指数。我见过这页面,但解决方案似乎对我不起作用。无论是我的能力不足,还是其他情况,任何帮助都值得感激。
MWE 如下:
\documentclass{article}
\usepackage[md]{titlesec}
\usepackage{filecontents}
\usepackage[style=mla, citestyle=authoryear-comp, backend=bibtex]{biblatex}
\begin{filecontents}{myreferences.bib}
@article{einstein,
author = "Albert Einstein",
title = "{Zur Elektrodynamik bewegter K{\"o}rper}. ({German})
[{On} the electrodynamics of moving bodies]",
journal = "Annalen der Physik",
volume = "322",
number = "10",
pages = "891--921",
year = "1905",
DOI = "http://dx.doi.org/10.1002/andp.19053221004"
}
@article{Lagarias,
author = "Jeffery C. Lagarias",
title = "{Euler's constant: Euler's work and modern developments}",
journal = "Bulletin of the American Mathematical Society",
volume = "50",
pages = "556",
year = "2013",
DOI = "10.1090/s0273-0979-2013-01423-x"
}
@inbook{Leonhard,
author = "Leonhard Euler",
title = "{Tentamen novae theoriae musicae ex certissimis harmoniae principiis dilucide expositae}. ({Latin}) [{An illuminating} new theory of music {most exposed} to the principles of harmony]",
chapter = "Chapter VII. De Variorum Intervallorum Receptis Appelationibus",
year = "1739",
publisher = "St Petersburg Academy",
pages = "102--112",
address = "St Petersburg"
}
@inbook{Stifel,
author = "Michael Stifel",
title = "{Arithmetica Integra}. ({Latin})[ Integrated Arithmetic]",
pages = "8--9",
year = "1544",
publisher = "Johann Petreium",
address = "Nuremburg",
URL = "https://books.google.com/books?id=fndPsRv08R0C&printsec=frontcover&dq=arithmetica+integra&hl=en&ei=CJVeTozEMonV0QGQ_LH9AQ&sa=X&oi=book_result&ct=result&sqi=2&redir_esc=y#v=onepage&q&f=false"
}
@inbook{Leiss,
author = "Ernst L. Leiss",
title = "A Programmer's Companion to Algorithm Analysis",
year = "2006",
publisher = "CRC Press",
pages = "28",
ISBN = "9781584886730"
}
@inbook{Rowan,
author = "Rowan Garnier and John Taylor",
title = "Discrete Mathematics, Proofs, Structures, and Applications",
version = "3",
year = "2009",
publisher = "CRC Press",
pages = "620",
ISBN = "9781439812808"
}
@inbook{Goodrich,
author = "Michael T. Goodrich and Roberto Tamassia",
title = "Algorithm Design: Foundations, Analysis, and Internet Examples",
year = "2002",
publisher = "John Wiley \& Sons",
pages = "23",
}
@inbook{Knuth,
author = "Donald E. Knuth",
title = "Fundamental Algorithms, The Art of Computer Programming",
version = "3",
year = "1997",
publisher = "Addison-Wesley Professional",
pages = "11",
ISBN = "9780321635747"
}
@inbook{Fred,
author = "Fred Roberts and Barry Tesman",
title = "Fundamental Algorithms, The Art of Computer Programming",
version = "2",
year = "2009",
publisher = "CRC Press",
pages = "206",
ISBN = "9781420099836"
}
@inbook{Steven,
author = "Steven S. Skiena",
title = "The Algorithm Design Manual",
version = "2",
year = "2009",
publisher = "Springer Press",
address = "New York",
pages = "78",
ISBN = "9781848000698"
}
@inbook{campbell,
title={The Musician's Guide to Acoustics},
author={Murray Campbell and Clive Greated},
isbn={9780191591679},
url={https://books.google.com/books?id=iiCZwwFG0x0C},
year={1994},
publisher={OUP Oxford}
}
@inbook{france,
title={Introduction to Physical Education and Sport Science},
author={Robert C. France},
isbn={9781418055295},
pages={282},
lccn={2008930301},
url={https://books.google.com/books?id=dH2nB1CX2SMC},
year={2008},
publisher={Cengage Learning}
}
@online{Eulernamed,
author = "Wikipedia",
title = "{List of things named after Leonhard Euler}",
year = "2007",
url = "{https://en.wikipedia.org/wiki/List_of_things_named_after_Leonhard_Euler.html}"
}
@online{Powerset,
author = "Wikipedia",
title = "{Power set}",
year = "2015",
url = "{https://en.wikipedia.org/wiki/Power_set.html}"
}
@online{Comptree,
author = "Paul E. Black",
title = "{Complete Binary Tree}",
year = "2016",
note = {https://xlinux.nist.gov/dads/HTML/completeBinaryTree.html}
}
\end{filecontents}
\addbibresource{myreferences.bib}
\begin{document}
The Binary Logarithm ($\log_2 n$) is the power to which the number $2$ must
be raised to obtain the value $n$ (for any real number $x$). Ergo, \[x = \log_2
n \Longleftrightarrow 2^x = n\] The first use of the binary logarithm was in
music theory, by Leonhard Euler ~\footcite{Leonhard}, who is the only
mathematician with two numbers named after him~\footcite{Eulernamed} (Euler's
Number ($e \approx 2.71828$ ~\footcite{Eulernamed}) and the Euler-Mascheroni
constant ($\gamma \approx 0.57721$) ~\footcite{Lagarias}). However, the first
known table of binary logarithms is credited to Michael Stifel
\footcite{Stifel}. Stifel was also the first to use the term "exponent" and
includes the $q^m \times q^n = q^{m+n}$ and $ \frac{q^m}{q^n} = q^{m-n}$
~\footcite{Stifel} rules in his book \emph{Arithmetica Integra}. Today's form of
the binary logarithm (which applies to any number, and not necessarily a power
$n$ to base $2$ ($2^n$) was established by Euler in 1739, in a table of binary logarithms for integers $1$ to $8$, to 7 decimal digits of accuracy\footcite{Leonhard}. has long been of use with computations, as $2^n$ is
commonly used for the classification of $1$s and $0$s, mainly as Boolean values.
\end{document}
答案1
要添加方括号,您可以更改定义
\@makefnmark
文本中显示的数字\@makefntext
脚注中显示的数字
\documentclass{article}
\usepackage[md]{titlesec}
\usepackage{filecontents}
\usepackage[style=mla, citestyle=authoryear-comp, backend=bibtex]{biblatex}
\begin{filecontents}{myreferences.bib}
@article{einstein,
author = "Albert Einstein",
title = "{Zur Elektrodynamik bewegter K{\"o}rper}. ({German})
[{On} the electrodynamics of moving bodies]",
journal = "Annalen der Physik",
volume = "322",
number = "10",
pages = "891--921",
year = "1905",
DOI = "http://dx.doi.org/10.1002/andp.19053221004"
}
\end{filecontents}
\makeatletter
\renewcommand\@makefnmark{\textsuperscript{[\@thefnmark]}}
\renewcommand\@makefntext[1]{\textsuperscript{[\@thefnmark]}\enspace #1}
\makeatother
\addbibresource{myreferences.bib}
\begin{document}
Test\footcite{einstein}
\end{document}