Arara 错误 BibMacro

Arara 错误 BibMacro

我正在使用 arara(在 ubuntu 16、TeXLive、TeXWorks 上),在其中运行 biblatex(回退到 bibtex)。在 Windows 中,同一文档编译时没有错误,因此我认为这是 arara 的错误。尝试编译时收到的错误是:

Package biblatex Warning: Using fall-back BibTeX(8) backend:
(biblatex)                functionality may be reduced/unavailable.

) (/usr/local/texlive/2016/texmf-dist/tex/latex/biblatex/biblatex.def)
(/usr/local/texlive/2016/texmf-dist/tex/latex/biblatex-mla/mla.bbx
(/usr/local/texlive/2016/texmf-dist/tex/latex/biblatex/bbx/standard.bbx)
! Illegal parameter number in definition of \blx@defformat@d.
<to be read again> 
                   4
l.56     {\usebibmacro{name:first-last}{#1}{#4
                                              }{#5}{#7}}
? 

无论我在提供的 MWE 中在参考书目前添加额外的空格,它总是显示第 56 行。我看了看问题,但我只调用了我的文件一次(如下所示)。另一个问题(我找不到)是用户制造的参考书目类型错误,这不是我的情况。我看到的其他问题没有解决我的答案,或者我不理解,但如果能解决这个问题,我将不胜感激。

编辑:我的 BiBTeX 版本是 0.99d,这似乎是最新版本,我使用了链接安装 BiBLaTeX 和 Biber,但仍然出现相同的错误

以下是 MWE:

% arara: pdflatex
% arara: bibtex
% arara: pdflatex
% arara: pdflatex
\documentclass[11pt,a4paper]{article}

\usepackage{filecontents}
\usepackage[style=mla, citestyle=authoryear-comp, backend=bibtex]{biblatex}

\begin{filecontents}{myreferences.bib}

@article{Lagarias,
    author =       "Jeffery C. Lagarias",
    title =        "{Euler's constant: Euler's work and modern developments}",
    journal =      "Bulletin of the American Mathematical Society",
    volume =       "50",
    pages =        "556",
    year =         "2013",
    DOI =          "10.1090/s0273-0979-2013-01423-x"
}

@inbook{Leonhard,
    author    = "Leonhard Euler",
    title     = "{Tentamen novae theoriae musicae ex certissimis harmoniae principiis dilucide expositae}. ({Latin}) [{An illuminating} new theory of music {most exposed} to the principles of harmony]",
    chapter     = "Chapter VII. De Variorum Intervallorum Receptis Appelationibus",
    year      = "1739",
    publisher     = "St Petersburg Academy",
    pages     = "102--112",
    address   = "St Petersburg"
}

@inbook{Stifel,
    author    = "Michael Stifel",
    title     = "{Arithmetica Integra}. ({Latin})[ Integrated Arithmetic]",
    pages     = "8--9",
    year      = "1544",
    publisher     = "Johann Petreium",
    address   = "Nuremburg",
    URL     = "https://books.google.com/books?id=fndPsRv08R0C&printsec=frontcover&dq=arithmetica+integra&hl=en&ei=CJVeTozEMonV0QGQ_LH9AQ&sa=X&oi=book_result&ct=result&sqi=2&redir_esc=y#v=onepage&q&f=false"
}

@inbook{Leiss,
    author    = "Ernst L. Leiss",
    title     = "A Programmer's Companion to Algorithm Analysis",
    year      = "2006",
    publisher     = "CRC Press",
    pages     = "28",
    ISBN     = "9781584886730"
}

@inbook{Rowan,
    author    = "Rowan Garnier and John Taylor",
    title     = "Discrete Mathematics, Proofs, Structures, and Applications",
    version     = "3",
    year      = "2009",
    publisher     = "CRC Press",
    pages     = "620",
    ISBN     = "9781439812808"
}

@inbook{Goodrich,
    author    = "Michael T. Goodrich and Roberto Tamassia",
    title     = "Algorithm Design: Foundations, Analysis, and Internet Examples",
    year      = "2002",
    publisher     = "John Wiley \& Sons",
    pages     = "23",
}

@inbook{Knuth,
    author    = "Donald E. Knuth",
    title     = "Fundamental Algorithms, The Art of Computer Programming",
    version     = "3",
    year      = "1997",
    publisher     = "Addison-Wesley Professional",
    pages     = "11",
    ISBN      = "9780321635747"
}

@inbook{Fred,
    author    = "Fred Roberts and Barry Tesman",
    title     = "Fundamental Algorithms, The Art of Computer Programming",
    version     = "2",
    year      = "2009",
    publisher     = "CRC Press",
    pages     = "206",
    ISBN      = "9781420099836"
}

@inbook{Steven,
    author    = "Steven S. Skiena",
    title     = "The Algorithm Design Manual",
    version     = "2",
    year      = "2009",
    publisher     = "Springer Press",
    address     = "New York",
    pages     = "78",
    ISBN      = "9781848000698"
}

@inbook{campbell,
  title={The Musician's Guide to Acoustics},
  author={Murray Campbell and Clive Greated},
  isbn={9780191591679},
  url={https://books.google.com/books?id=iiCZwwFG0x0C},
  year={1994},
  publisher={OUP Oxford}
}

@inbook{france,
  title={Introduction to Physical Education and Sport Science},
  author={Robert C. France},
  isbn={9781418055295},
  pages={282},
  lccn={2008930301},
  url={https://books.google.com/books?id=dH2nB1CX2SMC},
  year={2008},
  publisher={Cengage Learning}
}

@online{Eulernamed,
    author    = "Wikipedia",
    title     = "{List of things named after Leonhard Euler}",
    year    = "2007",
    url       = "{https://en.wikipedia.org/wiki/List_of_things_named_after_Leonhard_Euler.html}"
}

@online{Powerset,
    author    = "Wikipedia",
    title     = "{Power set}",
    year    = "2015",
    url       = "{https://en.wikipedia.org/wiki/Power_set.html}"
}

@online{Comptree,
    author    = "Paul E. Black",
    title     = "{Complete Binary Tree}",
    year    = "2016",
    note       = {https://xlinux.nist.gov/dads/HTML/completeBinaryTree.html}
}
\end{filecontents}

\addbibresource{myreferences.bib}

\makeatletter
\renewcommand\@makefnmark{\textsuperscript{[\@thefnmark]}}
\renewcommand\@makefntext[1]{\textsuperscript{[\@thefnmark]}\enspace #1}
\makeatother

\begin{document}
The Binary Logarithm ($\log_2  n$) is the power to which the number $2$ must be raised to obtain the value $n$ (for any real number $x$). Ergo, \[x = \log_2 n \Longleftrightarrow 2^x = n\] The first use of the binary logarithm was in music theory, by Leonhard Euler ~\footcite{Leonhard}, who is the only mathematician with two numbers named after him~\footcite{Eulernamed} (Euler's Number ($e \approx 2.71828$ ~\footcite{Eulernamed}) and the Euler-Mascheroni constant ($\gamma \approx 0.57721$) ~\footcite{Lagarias}). However, the first known table of binary logarithms is credited to Michael Stifel \footcite{Stifel}. Stifel was also the first to use the term "exponent" and includes the $q^m \times q^n = q^{m+n}$ and $ \frac{q^m}{q^n} = q^{m-n}$ ~\footcite{Stifel} rules in his book \emph{Arithmetica Integra}. Today's form of the binary logarithm (which applies to any number, and not necessarily a power $n$ to base $2$ ($2^n$) was established by Euler in 1739, in a table of binary logarithms for integers $1$ to $8$, to 7 decimal digits of accuracy\footcite{Leonhard}. has long been of use with computations, as $2^n$ is commonly used for the classification of $1$s and $0$s, mainly as Boolean values.

\newpage
\listoffigures
\listoftables

\vfill
\begin{flushleft}
\Urlmuskip=0mu plus 1mu

\printbibliography
\end{flushleft}
\end{document}

相关内容